q

Check for
updates

Secure and Distributed Crowd-Sourcing
Task Coordination Using
the Blockchain Mechanism

Safina Showkat Ara®™), Subhasis Thakur, and John G. Breslin

Insight Centre for Data Analytics, NUI Galway, Galway, Ireland
{safina.ara,subhasis.thakur, john.breslin}@insight-centre.org

Abstract. A complex crowd-sourcing problem such as open source soft-
ware development has multiple sub-tasks, dependencies among the sub-
tasks and requires multiple workers working on these sub-tasks to coor-
dinate their work. Current solutions of this problem employ a central-
ized coordinator. Such a coordinator decides on the sub-task execu-
tion sequence and as a centralized coordinator faces problems related to
cost, fairness and security. In this paper, we present a futuristic model
of crowd-sourcing for complex tasks to mitigate the above problems.
We replace the centralized coordinator by a blockchain and automate
the decision-making process of the coordinator. We show that the pro-
posed solution is secure, efficient and the computational overhead due to
employing a blockchain is low.

Keywords: Crowd-sourcing * Task coordination - Blockchain - Trust

1 Introduction

In this paper, we study complex Crowd-Sourcing (CS) task which has multiple
sub-tasks, constraints among these sub-tasks. It will require multiple workers to
coordinate their effort to solve such a complex task. Coordination among the
workers is recognized as an important aspect for future CS platforms [6,16].
For example in open source software development [11], a developer works on
a specific part of the software and it must coordinate with other developers
working on other parts of the software. Another example of such CS task may
be a multi-player version of the protein folding game [3]. The challenges with
executing such complex CS tasks are as follows:

Cost of Coordination: We may assign the CS sub-tasks to the workers and the
workers must coordinate their efforts to comply with the constraints among the
sub-tasks. Coordinated execution of these sub-tasks is a sequence of sub-task
executions where a worker must consider previous solutions while solving its
task. The most efficient coordinator would minimize the length of such a sub-task
execution sequence. Apart from deciding on the sub-task execution sequence, the
coordinator must also evaluate compatibility among solutions of the sub-tasks.

© Springer Nature Switzerland AG 2019
R. Montella et al. (Eds.): IDCS 2019, LNCS 11874, pp. 402-413, 2019.
https://doi.org/10.1007/978-3-030-34914-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34914-1_38&domain=pdf
https://doi.org/10.1007/978-3-030-34914-1_38

Distributed Crowd-Sourcing Task Coordination Using Blockchain 403

It may hire additional workers to perform such evaluations and hence the cost
to execute the task will increase.

Fairness: Workers may need to execute the sub-tasks multiple times to comply
with constraints among the sub-tasks. We need a method to ensure fairness in
this process, i.e., the coordinator must follow certain rules to ensure fairness as
it asks a certain worker to solve its sub-task again.

Trust on the Coordinator: Either the CS platform or the workers may act as the
coordinator. The problem with the first option is that it is a centralized solution
and the workers must trust the centralized coordinator for correct evaluations
of coordination decisions. The problem with the second option is that a worker
may be malicious and may manipulate the coordination decisions. Note that a
worker may need to execute its task multiple times to comply with constraints
among the sub-tasks. If the solutions of two workers are in conflict then one of
them should backtrack and solve its task again. If the coordinator is malicious
then it may favor certain workers and they may not execute their task again.
Such activities will reduce the cost of task execution of malicious workers but it
will reduce the quality of the overall solution.

The existing solutions [12,14,16] for CS task coordination do not mitigate
these challenges. In this paper, we propose a BlockChain (BC) based distributed
coordinator for CS where any worker may act as the coordinator and the BC
mechanism ensures that such a worker remains honest while acting as the coor-
dinator. Hence the proposed solution erases the requirement that the workers
must evaluate their trust on the coordinator. Using the BC mechanism, we may
securely store transaction records among peers of a peer to peer network. We
use the BC mechanism to develop the CS platform as follows:

— Every worker acts as a miner and each worker keeps the entire record of the
solutions produced by the workers.

— We propose a distributed coordination mechanism where each worker may act
as a coordinator. The BC mechanism ensures that a worker behaves honestly
while acting as a coordinator. Hence, this BC-based distributed coordination
mechanism erases the requirement that a worker must evaluate its trust on
the coordinator.

— We keep solutions in a BC, it becomes impossible to overwrite the records of
the solutions.

In this paper we present the following results:

Security: We present a BC maintained CS platform where CS data (such as
task, worker selection, solutions) is securely stored and it is infeasible to overwrite
it. Also, blockchain ensures that the workers behave honestly while acting as the
coordinator.

Fairness: We develop rules to ensure fairness in sub-task re-execution. These
rules are part of the blockchain’s data structure and consensus protocol to ensure
enforcement of such rules.

404 S. S. Ara et al.

Convergence: We show that the distributed coordination mechanism converges
quickly.

Computational Overload: We show that the proposed coordination mecha-
nism has negligible computational overload due to participating in a blockchain.

Efficiency: We show that the proposed distributed coordination mechanism is
efficient. An efficient coordinator minimizes the number of times each worker
executes its subtask.

The paper is organized as follows: In Sect. 2 we describe the task coordination
problem. In Sect.3 we present a brief description of the BC mechanism. In
Sect. 4 we present the BC-based distributed coordination mechanism. In Sect. 5
we present an experimental evaluation of the proposed coordination mechanism.
In Sect. 6 we mention relevant literature and we conclude the paper in Sect. 7.

2 Problem Statement

In this section, we describe a CS task which requires coordination among multiple
workers. There are n workers W = (wy,...,w;,). A task T = (¢1,...,t,) has n
subtasks. Each subtask is assigned to one worker. W(¢;) € W indicates the
worker of the subtask ¢;. subtasks require coordination among workers to satisfy
constraints among them. There are k constraints § = (61, ..., 0x). A constraint 6;
requires coordination of workers corresponding to tasks 6;(T") C T In centralized
coordination, workers will report solutions of their respective subtasks to the
coordinator who decides the execution of next set of subtasks, i.e., based on
the present solutions who should again execute their tasks to satisfy constraints
among the subtasks.

We represent the task, subtask allocation to workers and constraints among
subtasks using a task graph. A task graph is an undirected graph G = (W, E)
whose vertices are the workers and there is an edge (w;, w;) € E if there is a
constraint 6, such that tq,t, € 0,(T) and W(t,) = w; and W(t,) = w;. For
example consider a sudoku puzzle, cells with label 0 are empty cells and we have
to assign a value between 1 to 9 to the empty cells. A subtask is to assign a value
to an empty cell. A worker w; (with subtask ¢;) is neighbour of another worker
w;(with subtask t;) if ¢; and t; are on the same row (or column) of the sudoku
puzzle.

In this paper, we will use sudoku puzzle as a complex task to be solved by
multiple workers in a CS platform. The challenges for a distributed coordinator
are as follows:

— Secure records: As the workers act as coordinator they can access the data
on task execution by the workers. They can modify this data. Hence we need
a security mechanism for safe storage and access to these data.

— Task generation: A worker executes its task with the information about
solutions to subtasks solved by its neighbours to produce a solution which
does not violate any constraints or maximally complies with the constraints. It
incurs a certain cost every time it executes its subtask. We need a mechanism

Distributed Crowd-Sourcing Task Coordination Using Blockchain 405

that can correctly identify the worker who should adjust its solution, i.e.,
execute its subtask again based on the solutions produced by other workers.
It may happen that a malicious worker would deny to execute its task again
and ask its neighbours to adjust their respective solutions.

3 The Blockchain Mechanism (BC)

BC allows peers of a peer to peer network to transfer tokens among them using
transactions. We will provide a detailed description of the transaction data struc-
ture. If a peer P; wants to send = tokens to P» then it creates the transaction T
and announces it to its neighbours in the BC peer to peer network. Once such
a neighbour P; receives the transaction 77, Ps attempts to verify it. If it can
verify 17 as a valid transaction it forwards T} to its neighbours. BC mechanism
stores consistent replicas of transaction history among the peers of a peer to
peer network on multiple peers. Valid transactions are grouped into a block and
blocks are stored as BC where each block has only one parent block. A new
block can be added to the BC as the child of the most recent block. Any peer
can verify transactions and add a new block to the BC provided it satisfies the
conditions of the distributed consensus protocol. Distributed consensus protocol
ensures that all peers have the same replica of the BC, i.e., they have the same
history of transactions.

4 BC Based Task Coordination

We use blockchain as a coordinator for complex CS task is as follows:

— Workers form the blockchain peer to peer network. Two workers are neigh-
bours in this network if their corresponding sub-tasks have at least one con-
straint.

— Each worker solves its sub-task and the solution is converted as a blockchain
transaction by attaching the solution file (i.e., a textfile, a media file, etc.) to
a blockchain transaction.

— After solving the sub-task, the worker announces its solution by creating the
above transaction whose recipient is one of its neighbours in the blockchain
peer to peer network. For example, as shown in Fig. 1, worker w; and w9 send
the solutions of their sub-tasks t; and t2 to the worker ws as transactions 71
and T2.

— A worker (a peer) regularly compares the solutions it has received from its
neighbours. The worker follows a set of rules to evaluate the solutions.

— The solutions a worker has to compare and evaluate is represented by its
unspent transactions. For example in Fig. 1, ws has to compare solutions in
71 and T5. For each such unspent transaction, it first checks if there is any other
unspent transaction such that there are constraints among the corresponding
sub-tasks. Thus w3 checks if the sub-tasks whose solutions are mentioned in
71 and 75 have any constraints. In this example, we assume that there are
such constraints (61, 62, 63).

406 S. S. Ara et al.

— After the evaluation of solutions mentioned in its unspent transactions, each
worker performs the following steps:

e Let w3 evaluated that solution mentioned in 7y is valid compared with
the solution mentioned in 7.

e w3 will create two new transactions. In the transaction 7{ it will copy the
content of 77 and send it to a neighbour wy. In the transaction 74 it will
copy the content (the solution to the sub-task) of 7 and send it to ws
who is the creator of the content of 5.

— If a worker receives a transaction such that it had created the content then
it must solve its sub-task again.

— The above-mentioned procedure continues until a time limit as solutions to
each sub-tasks are evaluated against other sub-tasks and invalid sub-tasks are
solved again.

ﬁ
Y —_— PY

’ | h

(]

2

2

Be
[

)

]

Fig. 1. Sub-tasks t; and t2 with a set of constraints among them are assigned to wi
and wsz. They solve t1 and t2 and create 7 and 72 with ws as the recipient. ws evaluate
these solutions and decides that the solution of #; is valid. It sends the solution to t1
to another neighbour for further evaluation and sends the solution of t2 back to its
creator wa. wa solves its sub-task again.

In the above approach we observe the following:

— A solution of a sub-task is evaluated against solutions to other sub-tasks (with
which it has certain constraints). Thus the number of times a solution to a
sub-task is compared with solutions for related sub-tasks is an indicator of
its validity compared with valid solutions for all sub-tasks.

— We need additional data fields in the transaction data structure to indicate
who and when the solution to a sub-task was found.

Now we present a detailed description of the above mentioned distributed
coordination mechanism.

4.1 Peer to Peer Network

We construct a BC peer to peer network from a task T = (t1,...,t,), 0 =
(01, ...,0k) constraints over the subtasks and a set of workers W = (w1, ..., wy).
We assign task t; to worker w;. The peer to peer network is an undirected graph
G = (W, E) where FE is the set of edges. Two workers w; and w; are neighbours
if there is a constraint 6, such that ¢;,¢; € 0,.

Distributed Crowd-Sourcing Task Coordination Using Blockchain 407

4.2 Transactions

We augment the transaction data structure as follows:

Content: A transaction contains a file describing the solution to a sub-task.
This file may be a text file or a media file but must be in a predefined file
format. It replaces the ‘amount’ information of a BC transaction.

Checksum: It will contain checksum value of the file to ensure the integrity of
the file and hence the solution.

Origin: It will contain the identity of the peer who created the content file. It
will store such peer’s public key.

Origin Time: It will record the time when the content file was created.

Trail Number: It will record the number of times the solution corresponding to
a transaction is compared with solutions corresponding other transactions and
this solution was verified as a valid solution (does not violate any constraint) at
every instance of such comparison.

UTXO: Unspent transaction output (UTXO) ensures that only unspent trans-
actions are used as input to new transactions. We use the following procedure
to enforce the UTXO requirement.

— Transaction for solution generation: A worker w; should create a new solution
for its subtask if either of the following holds:

(1) It has received a transaction 7, whose origin is w; and trail number is 0.
7, indicates that the previous solution of w; for its subtask is rejected by
other workers and hence it must execute its subtask again. w; will execute
its task again and such a solution will be included in a new transaction
7, whose Content is the new solution, ‘checksum’ is the checksum of the
new solution and it uses 7, as the input to 7.

(2) Each worker is endowed with an empty transaction 70 and it is used as
the input to the first transaction that the worker creates whose content
is its solution to its subtask.

— Transaction forwarding: A worker w; forwards its unspent transactions 7
whose Origin is not w; by following this procedure:

(1) For each transaction 7, € 7, if there is no other transaction in 7 with
which 7, shares at least one constraint then w; forwards 7,, to a neighbour-
ing worker by creating a new transaction 7, whose input is 7,,. Content,
Origin, Origin time and trail number of 7,/ remains same as 7,.. Note that
trail number indicates the number times a transaction (hence a solution
to a subtask) is evaluated as a valid transaction against other relevant
transactions (corresponding subtasks share constraints). As there are no
other relevant transactions we do not increase the trail number.

(2) For each transaction 7, € 7, if there are other transaction in 7/ C 7 with
which 7, shares at least one constraint then (a) if trail number of 7, is
more than any other transaction in 7/ and Origin time of 7, is less than

408 S. S. Ara et al.

the same of any other transaction 7, € 7/ whose trail number of 7, is
same as 7, then w; forwards 7, to a neighbouring worker by creating a
new transaction 7,» whose input is 7,.. Content, Origin and Origin time of
T Temain the same as 7,. But we increase trail number of 7,/ as 1 more
than the same for 7. (b) If 7, does not satisfy the previous criteria then
w; forwards 7, to Origin(r,) by creating a new transaction 7, whose
input is 7,, and content, origin remains same as 7,. But 7,/’s trail number
becomes 0. Hence if a new solution is in conflict with an old solution then
the new solution is regarded as a valid solution if its trail number is same
as the trail number of the old solution.

Figure 2 shows an example of the above transaction data structure. w; and
ws solved their respective sub-tasks (with a constraint among them) and sent
the solution as transactions 71 and 75 to ws. Origin field of 7 is marked with
the public key of wy (we just use wy) and its trail number is 1. wq evaluates that
solution in 71 is valid compared with the solution in 75. Hence it forwards the
solution in 71 to wy for further evaluation by creating a new transaction 7 with
origin as wi and trail number as 1 more than the trail number of 7. It also
rejects the solution mentioned in 7, as it creates a new transaction 74 with trail
number 0 and Origin as we. Hence the solution is 77 is further evaluated with
solutions from other sub-tasks and ws generates a new solution for its sub-task.

120
!

o o o

®
Cw ® Puzsize 12

g . m—
T T £ #1 - 10
! : 3 N
< —
| Origin: w, | | Origin: w, | 3 e e e
9 o |
Origin-time: 0123 Origin-time: 456 § ©
2
Trail number: 1 Trail number: 1 ?) Puzze size 8
o
Uk [content: Fite_345 | | W3 u@ntent; File_1 U h E o Fom— Puzsh szo 7
z
) \I/ p——
Tl
w, [origin-tipef0123 | Origin-time: 456 p—
\mnumbenl | Trail number: 0 o
Content: File_1 . o 00 50 20 250
\ Time
Fig.2. It shows how data fields Fig.3. Convergence time for dis-

of transaction are changed. For a tributed coordination mechanism.
valid transaction trail number will be
increased by 1 and for an invalid trans-

action it will be zero.

Distributed Crowd-Sourcing Task Coordination Using Blockchain 409

We will use proof of work as the distributed consensus protocol. We sum-
marize the fairness rules for sub-task re-execution such as Any worker must
re-execute its sub-task if it is not maximally compatible with other related sub-
tasks. If two related sub-tasks are in conflict then the sub-task which is least
tested for compatibility with solutions for related sub-tasks will be executed
again. If two related sub-tasks are in conflict and the number of times these
sub-tasks are tested for compatibility with solutions for related sub-tasks are
equal then, the sub-task which was solved earlier will be executed again.

5 Experimental Evaluation

In this section present an experimental evaluation of the proposed BC based
distributed coordination mechanism. We simulate a BC using agent based mod-
elling and asynchronous event simulation in Python. Peers (workers for a CS
task) are modelled as autonomous agents. There are two types of workers (a)
good quality workers and (b) bad quality workers. A good quality worker quickly
finishes its subtask and a bad quality worker takes more time. In the following
experiments, a bad quality worker, takes 5 times more time to finish its subtask
compared with any good quality worker. We implement each worker’s workflow
as two processes. The first process is concerned with solving its subtask and the
second process is concerned with forwarding transactions according to the trans-
action forwarding rules described in Sect. 4. Execution time for the first process
depends on the worker’s quality. We simulate these processes using SIMPY pack-
age of Python which simulates asynchronous events. For a bad quality worker we
suspend its subtask solving process for next 5 time instances and the same is sus-
pended for 1 time instant for good quality workers. ¢; will denote the ‘Timeout’
(the time duration for which this process will sleep) amount for this process. We
assume that verifying whether a solution for a subtask is correct or not is an easy
problem and hence we do not impose any ‘Timeout’ for transaction forwarding
process. There is no standard benchmark dataset for task coordination in CS
[12,14]. We propose to use sudoku puzzles as benchmark dataset. Each empty
cell of a sudoku puzzle is a subtask and one subtask is assigned to one worker.
We use puzzles of size 4 to 14. By increasing the puzzle size we can increase the
number of subtasks, the complexity of constraints and number of constraints.
Algorithm 1 describes the workflow for each worker. It executes two processes.
The first process (line 5 to line 9) solves the subtask and the second process (line
10 to 27) forwards transactions. The first process checks if the worker w; received
a transaction with origin w; and trail number 0. Such a transaction indicates
the solution proposed by w; is discarded by other workers as it is in conflict
with solutions for other subtasks. If there is such a transaction then w; finds a
new solution for its subtask and creates a new transaction. The second process
checks if it has received any transaction whose origin is not w;. For each of such
transaction 7., it checks if trail number and origin time of 7, is more and at
most the same of any other transaction 7,/. If 7, satisfies these conditions then
it forwards 7, to a neighbour by increasing the trail number. Additionally, it

410 S. S. Ara et al.

Algorithm 1. Simulation
Data: A task T' = (t1,...,tn) , Task graph G = (W, E) and set of constraints

0= {02 S 2T}
Result: Solution to T

1 begin

2 for FEwvery iteration do

3 for Every worker w; do

4 T +— unspent transactions of w;

5 if 7, € 7: Origin(ry) is w; and Trail(t,) = 0 then

6 Solve subtask ¢; while complying with {6} and other solutions

with trail number 0 (subtask is the CS subtask for example
developing part of a software)

7 Create new transaction 7’ with the new solution

8 Send the new transaction to a random neighbour

9 Sleep(q:)
10 T «— unspent transactions of W; whose Origin is not w;
11 if 7 # 0 then
12 for Each transaction 17, € 7 do
13 T =7\Ts
14 7" C 7’ such that for any 7, € 7" there is a constraint 0;

where 7y, 7, € 0;
15 if 7/ = () then
16 Create transaction 7, with input 7
17 set Trail(r,) = Trail(ry)
18 Forward 7,/ to a neighbour wy
19 else
20 if Trail(t,) > Trail(t,) and T°(13) < T°(7,) then
21 Create transaction 7, with input 7,
22 set Trail(ry) = Trail(,) + 1
23 Forward 7,/ to a neighbour wy,
24 else
25 Create transaction 7, with input 7
26 set Trail(r,) =0
27 Forward 7,/ to a peer wi whose public key is
| Origin(7z)

28 [« create new block
29 Solve BC puzzle and augment BC and announce (8
30 3 « received new block
31 If 3’ is valid then Augment BC & announce 3

executes proof of work protocol with two more processes. The first process (line
28-29) creates and new block, solves the puzzle and announces puzzle solution
and new block to the network. The second process (line 30-31) receives a new
block from its neighbour. If the peer can verify that the block and associated

Distributed Crowd-Sourcing Task Coordination Using Blockchain 411

puzzle solution is correct then it augments its BC according to the rules described
in Sect.3 and it forwards the block to its neighbours. The second process may
interrupt the block creation process if a new received block contains transactions
which are included in the new block under construction of the former process.
If the block creation process is interrupted then the peer restarts it.

First, we analyze convergence time of the distributed coordination mech-
anism. We measure convergence time as the minimum number of iteration
required by the above simulation to find a valid solution for each subtasks.
Note that ‘time’ is measured as the number of iteration. We may calculate the
minimum convergence time for a centralized coordinator as follows: It will allow
subtasks with no constraints among them to run in parallel and other tasks will
be executed serially. There are at most x? subtasks for a puzzle with puzzle size
x. As a subtask has common constraint with at most 2z other subtasks, in every
iteration x2/2z = x/2 subtasks can be executed in parallel. Hence the minimum
convergence time is 22 /(x/2) = 2. We use 9 datasets as sudoku puzzles with size
from 4 to 12. The number of subtasks (and workers) for each dataset is at most
22, each worker has 2 constraints and number of variables in each constraint is at
most © where x is the puzzle size. Figure 3 shows the convergence time for these
datasets. It shows the number of workers with valid solutions for their respective
subtasks w.r.t time. We observe that convergence time increases as we increase
the puzzle size. We conclude that distributed coordination mechanism has finite
and short convergence time.

Next, we measure the efficiency of the distributed coordination mechanism in
terms of the number of times each worker solves its subtask. The most efficient
coordination mechanism requires each worker to execute its subtask only once.
Although this problem can be classified as distributed constraint satisfaction
problem and the complexity of such problems is [15] NP-complete. Hence it is
unlikely that there exists the most efficient algorithm. We evaluate the efficiency
of the proposed distributed coordination mechanism with datasets consisting of
sudoku puzzles with puzzle size 4, 6, 8, 10, 12 and 14. Figure 4 shows the efficiency
results as we plot the number of times each worker execute its subtask. We found
that on average each worker executes its subtask twice.

Finally, we measure the computational overhead of the proposed distributed
coordination mechanism. We measure it as the number of times each worker
needs to execute their subtasks and input size of each transaction forwarding
instances. In Fig.5 we plot the average number of transactions per transaction
forwarding instances. We found that the input size remains approximately 2
while we increase puzzle size from 4 to 14. Also as shown in Fig. 4 workers need
to execute subtasks approximately twice while we increase puzzle size from 4
to 14. Hence it shows that both these parameters do not increase as the puzzle
size is increased. Hence we claim that computational overhead of the proposed
distributed coordination mechanism is negligible.

412 S. S. Ara et al.

(a) Puzzle (b) Puzzle (c) Puzzle (d) Puzzle (e) Puzzle
size 4 size 6 size 8 size 10 size 12

Fig. 4. Efficiency of the distributed coordination mechanism

(a) Puzzle size 4 (b) Puzzle size 10 (c) Puzzle size 12 (d) Puzzle size 14

Fig. 5. Computational overhead of the distributed coordination mechanism

6 Related Literature

It is difficult to verify the solution produced by the workers. As mention by [5] low
quality workers and spammers are big threats to CS. Workers may also collude
in data labelling tasks [7]. [1] develop an algorithm to search expertise in decen-
tralised social network and provide incentives for them. Various mechanisms are
developed to address the problem of low quality work in CS. In [13] trust and
reputation are used to identify honest workers. In another approach, mechanism
design is used to encourage the workers to remain honest. These mechanisms
[2,8,9] developed rules for paying the workers in such a way that honest workers
receive better payment than dishonest workers. It should be noted that these
CS tools can be used in CS tasks which require coordination among workers.
Algorithms developed for distributed constraint satisfaction [15] may be used to
coordinate the workers. [12] proposed task coordination for CS but these algo-
rithms do not guarantee the security of CS platform and workers may collude
to overwrite transactions which recorded their work history. The first BC mech-
anism [10] uses proof of work as the distributed consensus protocol. Peercoin
(https://peercoin.net/) introduced the proof of stake protocol which uses stake
as the voting power instead of computing resource [4].

https://peercoin.net/

7

Distributed Crowd-Sourcing Task Coordination Using Blockchain 413

Conclusion

In this paper, we have proposed a BC-based solution for CS complex task which
requires coordination among the workers. The BC provides a secure CS environ-
ment which does not need a trusted coordinator.

Acknowledgement. This publication has emanated from research supported in part
by a researchgrant from Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/ 2289-P2(Insight) and by a research grant from SFI and the Department
of Agriculture, Food and the Marine on behalf of the Government of Ireland under-
Grant Number SFI/12/RC/3835 (VistaMilk), co-funded by the European Regional
Development Fund.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Ara, S.S., Thakur, S., Breslin, J.G.: Expertise discovery in decentralised online
social networks. In: ASONAM 2017 (2017)

Kamar, E.: Incentives for truthful reporting in crowdsourcing. In: AAMAS 2012
2012

%(hati%o, F., Cooper, S., Tyka, M.D., Xu, K.: Algorithm discovery by protein folding
game players. Proc. Natl. Acad. Sci. 108, 18949-18953 (2011)

King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-ofstake
(2012). http://www.peercoin.net/assets/paper/peercoin-paper.pdf

Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical turk.
In: CHI 2008 (2008)

Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A.: The future of
crowd work. In: CSCW 2013 (2013)

Lee, K., Tamilarasan, P., Caverlee, J.: Crowdturfers, campaigns, and social media:
tracking and revealing crowdsourced manipulation of social media. In: ICWSM
2013 (2013)

Liu, S., Miao, C., Liu, Y., Yu, H., Zhang, J., Leung, C.: An incentive mechanism
to elicit truthful opinions for crowdsourced multiple choice consensus tasks. In:
WI-IAT (2015)

Miller, N., Resnick, P., Zeckhauser, R.: Eliciting informative feedback: the peer-
prediction method (2009)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

Olson, D.L., Rosacker, K.: Crowdsourcing and open source software participation.
Serv. Bus. 7, 499-511 (2013)

Rahman, H., Roy, S.B., Thirumuruganathan, S., Amer-Yahia, S., Das, G.: “The
whole is greater than the sum of its parts”: optimization in collaborative crowd-
sourcing. CoRR (2015)

Ren, J., Zhang, Y., Zhang, K., Shen, X.: SACRM: social aware crowdsourcing with
reputation management in mobile sensing. CoRR (2014)

Tavakoli, A., Nalbandian, H., Ayanian, N.: Crowdsourced coordination through
online games. In: HRI 2016 (2016)

Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint
satisfaction problem: formalization and algorithms. IEEE Trans. Knowl. Data Eng.
10, 673-685 (1998)

Zhang, H., Law, E., Miller, R., Gajos, K.: Human computation tasks with global
constraints. In: CHI 2012 (2012)

http://www.peercoin.net/assets/paper/peercoin-paper.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

	Secure and Distributed Crowd-Sourcing Task Coordination Using the Blockchain Mechanism
	1 Introduction
	2 Problem Statement
	3 The Blockchain Mechanism (BC)
	4 BC Based Task Coordination
	4.1 Peer to Peer Network
	4.2 Transactions

	5 Experimental Evaluation
	6 Related Literature
	7 Conclusion
	References

