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Abstract. Crowdsourcing is an economical and efficient tool that hires
human labour to execute tasks which are difficult to solve otherwise.
Verification of the quality of the workers is a major problem in Crowd
sourcing. We need to judge the performance of the workers based on their
history of service and it is difficult to do so without hiring other workers.
In this paper, we propose an Ant Colony Optimization (ACO) based
reputation management system that can differentiate between good and
bad workers. Using experimental evaluation, we show that, the algorithm
works fine on the real scenario and efficiently differentiate workers with
higher reputations.

Keywords: Crowdsourcing + Reputation - Ant Colony Optimization -
Decentralised social network

1 Introduction

Crowdsourcing is an economical and scalable tool that allows one to hire workers
to perform certain tasks which are difficult to perform with a computer program.
Workers of a crowdsourcing platform have different levels of expertise. Due to
the unknown level of expertise of the workers, it is difficult to ensure quality
control on crowdsourced tasks. The difficulty of verification of the quality of
workers of crowdsourcing originates as it is an example of the principle agent
problem [10]. The only way to verify the performance of the workers is to employ
other workers to perform the same task.

Selecting a resourceful an efficient worker is a very crucial challenge in crowd-
sourcing. For any types of crowdsourcing, the reputation of a worker is very
helpful to analyse the performance of the worker and for selecting appropriate
worker [5]. In this paper, borrowing the idea of Ant Colony Optimizations, we
propose a reputation management algorithm for generating the reputation of
the workers in the crowd. Ant-Colony Optimization (ACO) is a heuristic design
proposed by Dorigo [7]. In ant colony optimization Ants deploy pheromone trail
as they walk; this trail guides other ants to choose the path that has the higher
pheromone. We create a reputation management algorithm based on the funda-
mental idea of ACO to find some resources in crowdsourcing. Alike the ACQO’s
random walk, to initiate the search process each worker will have a random walk
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in their neighbourhood and explore the first resourceful neighbour and after-
wards, other workers will follow the trail of the search. The contribution of our
work lies in two points: first, design and implement the algorithm. The second
is to evaluate the performance of the algorithm. Here we have used [1] dataset
and arranged it as a decentralised social network, and on this social network, we
executed the search for the workers with higher reputation.

The rest of the paper has been organized as below. Section 2 states the prob-
lem definition, including the search approach. In Sect. 3, we Develop our algo-
rithm for the reputation management and we are showing an experimental evo-
lution of the algorithm in Sect. 4. In Sect. 5, we have discussed the related work
that has done on reputation management for crowdsourcing and in Sect.6 we
conclude our work.

2 Problem Statement

Each crowd-sourcing job is executed in the following sequence. Let there be k
tasks (t1,to, 3, .. .1, ). Tasks are executed in the sequence of their subscripts. Let
there be n workers w = (wy,...,w,). w9 C w and w® C w will indicate the sets
of good and the bad workers such that w9 Uw® = w and w9 Nw® = (. We assume
that, a good worker performs each task correctly and a bad worker randomly
chooses an answer. For each task « > 1 workers are chosen from w uniformly at
random. We denote the set of chosen workers for task i as w(i) C W. In each
task, every worker gets # > 1 options to choose from as the solution. From the
above mentioned execution of k crowd-sourcing tasks we form a network among
the workers as follows:

1. We create a graph G with n vertices v = (v1,...,v,). Next, we add the edges
as follows.
2. For each task say t;, for each worker w, € w(i) we do the following:
(a) We add an edge (wy,w,) for each w, € w(i) (if the edge is not added
previously).
(b) If the answer of w, matches the answer of w, then we increase the weight
of the edge by 1 (initially weights of all edges is 0). Otherwise we decrease
the edge weight by 1.
3. After the construction of the graph G, we create GF (the positive graph) and
G (the negative graph) as follows:
(a) G and GV has the same vertex set as G.
(b) If the weight of an edge is positive the it is added to G¥ and if it is
negative then it is added to G™V.

We will illustrate the above mentioned graph construction process with a
small simulation. Let there are 100 workers and among them only 10 are good
workers. We construct the positive and the negative graph after 50 tasks using
the above mentioned procedure. The graphs are shown in Fig. 1. Note that, we
have used two parameters o and 3. They control the graph formation process
as follows:
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Fig.1. The positive graph is shown Fig. 2. The induced sub graph (with
in the left-hand side and the negative the vertices representing the good
graph is shown in the right-hand side. workers) on the positive graph is shown
The set of good workers are shown as on the left-hand side and the induced
the green colored vertices. (Color figure sub graph (with the vertices represent-
online) ing the good workers) on the negative

graph is shown on the right-hand side.

1. By increasing « (number of workers performing the same task) we can con-
struct the graph quickly. But o depends on the budget for executing the tasks.
In a low budget task, we may not be able to employ many workers.

2. (@ is the number of candidate solutions for each task. If the value of 3 is
increased then, it is more likely that the answers of the bad workers with any
other worker will not match. Hence the negative graph will get dense (also
the total weight of its edges will increase). The growth of the positive graph
will become slow with higher values of (3.

Our objective is to identify the vertices belonging to the good workers from
the above constructed graphs. We can do so by identifying certain characteristics
of the vertices owned by good workers. Let v9 C v be the vertices belonging to
the good workers. The induced sub graph by v9 on G is a connected graph
(after certain number of tasks). This is because, the good workers always provide
correct answer. Thus their answer matches and the weight of the edges among
them increases. The induced sub graph by v9 on G¥ is always an empty graph.
This is because the good workers do not contradict each other. We consider these
as the basic characteristics of these vertices.

The above mentioned characteristics of the vertices belonging to the good
workers is shown in Fig. 2. The graphs G* and GV changes as more and more
tasks are executed. The characteristics of the vertices owned by the good workers
is as follows:

1. We consider two parameters, (a) the weight of the edges in the sub graph
induced by v9 on the positive (negative) graph and (b) the total weight of
edges from vertices v—v9 to v9. The first parameter indicates the cohesiveness
of the answers provided by the good workers. The second parameter indicates
the ‘difficulty’ to separate a good worker from a bad worker. A Higher value
for the second parameter means that answers of the good and the bad workers
have matched and hence it is difficult to distinguish among them.
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2. We evaluate the simulation results of 100 workers (with 10 good workers)
with the interval of 30 tasks. The observations are as follows:

— The weight of the sub graph induced by v9 on the positive graph increases
as more and more tasks are executed. This is because good workers agree
with each other’s answer.

— Weight of the edges from v — v9 to v9 on the positive graph initially
increase and then after the execution of certain number of tasks they
decrease. This is because, as the number of times a bad worker partici-
pates in the same task with a good worker increases it gets less likely that
their answers will match at every instance.

— The weight of the edges from v—v9 to v9 on the negative graph decreases.

Based on the above mentioned characteristics of the graphs we define the
problem of identification of the good workers as follows:

— Partition the vertices v into groups as @ = (my,...,m,), such that 73 Ums U
~-Um, =v, mNm; =0 for all m;,7; € m and there is no m; € 7 such that
m; = 0. Each 7; induces a connected graph in G and induces an empty graph
in GV. The total weight of induced sub graphs on G is the maximum.

3 Algorithm

Algorithm 1 Ant colony algorithm for partitioning

GF = (V,E?) and G = (V, EV) be the positive and the negative graph respectively.
A partition over V’s of GY Ant; «— be the ant at v;

Each round Each ant Ant, Walk; C V be the set of vertices generated by a walk.
P—uv,Q«10

Each v, € Walk; G1 < Induced — Subgraph(GN, {vz, P})

G2 «— Induced — Subgraph(GY, {v., Q})

|E(G1)] >0 Add v, to Q

|[E(G2)] >0 Add v, to P

% Increase pheromones on edges among P %

Each edge e; in Induced — Subgraph(G¥,P) e;$Ph «— (1 — a)e;$Ph + af(l —
exp”@i8weight) %% Decrease pheromones on edges between P and Q %

Each edge e; in edges between P and Q in G¥ e;$Ph «— (1 —a)e;$Ph

% After every R rounds%
Delete the edges with an amount of pheromone less than the average pheromone on
all edges.
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We use an ant colony algorithm to find the partition. The algorithm is as follows:

1. We create an ant for each vertex. The objective of each ant is to construct a
neighborhood surrounding its vertex so that it contains vertices that induce
a connected maximum weighted sub graph in G¥ and that induce an empty
graph in GV,

2. The number of vertices of G¥ can be very high and hence we restrict the
exploration of each ant within a limited surroundings around its vertex. o
(positive integer) will be used for such restriction.

3. At each round, each ant makes an random walk of length § starting from its
vertex. The random walk is as follows: Each vertex is added to the random

walk as follows:
(a) Generate a random number between (0, 1) uniformly at random and if it

is less than .5 then choose a neighbor (in G¥) of the last vertex in the
walk uniformly at random.

(b) Else, order the neighbors of the last vertex(v,) in the random walk with
decreasing weight, calculated as follows:

Pheromone — level x (edge — weight)*
where x is > 1.

4. After constructing a random walk for each ant, we partition the vertices of
the walk into two sets P and @. P contains the vertices which can induce a
connected graph in G and empty graph in GV. Other vertices in the random
walk are added to Q.

5. We increase the pheromone level among the edges in P with the following
formula:

ei(Ph) (1 - a)e;(Ph) + af(1 — exp~eisweisht)

6. We decrease the pheromone level on the edges among P and @ with the

following formula:
€;(Ph) — (1 — a)e;(Ph)

7. After every R rounds, we delete edges whose pheromone level is less than the

average pheromone level in G*.

4 Experimental Evaluation

In this section, we present the experimental evaluation of our proposed crowd-
sourcing algorithm on both synthetic and real datasets. We implemented algo-
rithms where in each iteration we reduced the social graph with number of bad
worker with the lowest score and recomputed the score for the remaining work-
ers. We conducted this evaluation with three significant datasets. Firstly, We
prepared a synthetic training dataset for checking the accuracy confirmation of
the algorithms. Secondly, we used a synthetic test dataset for the experiment
with 100 and 500 workers, where good and bad workers are unknown. Finally,
we prepared the dataset with the text of 10% of questions and answers from the
Stack Overflow programming Q& A website and Stack Overflow website datasets,
to evaluate the performance of our reputation management algorithms on real
data.
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Algorithm 2 Random walk algorithm

G¥ = (V,ET) and GV = (V, EV) be the positive and the negative graph respectively,v;
be the start location and § be the length of the walk. A random walk of length 6 from
vi. Walk; — 0

Next «— v;

Each #in[1 : §] Random(1) > .5 N(Next) be the neighbors of Next in G¥ which are
not in Walk;

Wt be a matrix with 1 row and |N(Next)| columns

x € [1:|N(Next)|] ex be the edge between = and Next in V¥

wt[x] < —ez$Ph * (e, $Weight)?

vy € N(Next) be the neighbor with maximum wt

Add vy to Walk; and Next «— v,

vz be a neighbor of Next and ¢ Walk;

Add v, to Walk; and Next «— v,

Return Walk;

4.1 Modeling and Simulation

We generate a graph for the simulation, considering the users/workers as node
and their weight as the score for the calculation of reputation. Users/workers are
connected to other users/workers following the relation that exists in the stack
overflow i.e. users create an edge with other user who answered a question or
commented on the question. We model the dynamic crowd-sourcing platform as
follows:

Growth rate: At every step p (positive integer) new workers are registered
and available for work. Let ap and (1 — «)p be the sets of good and bad new
workers.

Decay rate: w is the decay rate. At every round w workers becomes inert, i.e.,
do not participate in crowd sourcing anymore. We assume that the probability
that a worker becomes inert depends on the number of jobs it has completed.
For example at step ¢, if x is the total number of jobs executed by all active
workers and y is the number of jobs executed by the worker w; then the
probability that w; becomes inert at step t + 1 is y/z.

Crossing time/steps: Using following equations we are calculating the
crossing time t, along with the expectation of edges with a good worker

E and expected increase of weight W. n; be the number of good workers.
The probability that a good worker is chosen in a job is &. In the same job
the probability that ¥ < a — 1 good workers are also chosen is: (’;Ll—:ll)k
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Expectation of edges with good workers is shown in the Eq. 1:

a, . np—1 ny—1.4 ny— 1., a, a rd
E=— 2 et k =
n( n—1+(n—l)+ + (n—l)) n(l—r+(1—r)2)
o 1 1(m=h)
:*( ny—1 + L )

nl- () (-2
a,n—-1 (ng—1)(n-1)
n nfn1+ (n—mnq)? )
e (n—l)(n—n1+n1—1))
n (n —ny)?

_ (n—=1)(n—-1) a, (n—1)?2

( 2 ) :7(

n' (n—mnq)

Expected weight of the graph induced by good workers after ¢ steps is:
2 2
tng &( (m=1)"Y = tZ, Where Z = ny2("=2). The probability that a good

(n—n1) n\(n—ny)?
worker will meet k bad workers in a job is: (2(2=21)*). The expected increase
of weight is:

W= DO+ 25 e k() 2)
:%(lir (1 idr)2> )
ZH_}L;,T*@_%})Q) (W
-2 —65 T (ﬁinfnn;n;i E (5)
= (n fi? n)? )

At step ¢ the total expected increase in weight is: ((£)(n1) (2% 7))- ws €

W and w, € W5: w, has met w, before and their answer does not match.

Step is t. Probability of choosing both w, and w, in one step is: (%)2

Hence the probability that they met before at least once in the last ¢t — 1
steps is: ((¢ — 1)(2)?). The probability that their answers do not match is

(%) Thus the probability that they have met before and their answers do
not match is ((¢ — 1)(%)2%) Now the expected loss of weight due to one
good worker is:((n —nq)(t — 1)(%)2%)7 and the expected loss from all good

Yvorkers is : ((n1)(n —na)(t — 1)(%)2%) Thus the weight W1 after ¢ steps
is:

— X~ (t— 1Y (7)
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where (X = ny (25 )) and (Y = (n1)(n — nl)(a)Q%). At a certain

2n
(Bn—n+mn1)? n

time ¢, the following holds:

t>Y/(Z-X+Y)

t>1/(Z)Y = XY +1) (8)
3
Hence,t>1/(a(6ﬁ_ 0 _a(ﬁﬂ— 1)3-1-1) 9)

> (a(B—1)°)/(B(B-1)? = ° + (B~ 1)°) (10)
4.2 Experiments

Synthetic Datasets: We simulate a social network with 500 workers to gener-
ate the negative and positive sub graph. We assume that 10% of workers have
a with high reputation score. We analysed the performance of our reputation
management algorithm on random partitioned graph, After collecting a list of
each worker’s resourceful neighbors from random search, the algorithm partitions
the graph into a negative and positive sub graphs. In this scenario, the worker-
reputation graph forms inevitably after the update of worker performance scores.

Real Datasets: We evaluate our algorithm on some standard datasets. We com-
bine [1] and [2] datasets. It is observed that the best accuracy achieved when
up to 500 workers are filtered using our reputation management algorithms. The
dataset contain questions and answers of the user with their score. In our setup
we simulate the scenario in a distributed manner such that when a question
triggers in the system the reputation management algorithm floods the ques-
tion to users with higher score as good workers. In this way after each question
and answer the system will update the score of the users. Figure 3 describe the
comparison of negative and positive graph and show they way we are accu-
mulating good workers. Figures4 and 5 shows the outcome of the reputation
management algorithm executed with synthetic data. Moreover, We execute the
simulation with the identified good and bad users in Stack-Overflow dataset.
Figures 7 and 9 shows the outcome for the execution of 100 task with 100150
Users of Stack-Overflow, and the algorithm allocate reputation to 90% and 80%
of the good worker respectively. Figures6, 8 and 9 shows the reputation of 500
workers after the execution of 100 tasks with both dataset. The algorithm allo-
cate 50% and 80% of the good workers respectively with 1% and 2% of the bad
workers reputation which are greater than the average reputation of all workers.

It clearly shows that the difference between the reputation of good and bad
workers is much higher than the difference between the score of the good and
the bad worker. Hence, using our algorithm of reputation management it is easy
to distinguish between a good and a bad workers.
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Fig.3. Graph on the left-hand side: The green points indicates the weight of the
induced sub graph on the positive graph by the vertices representing the good workers.
The red points indicates the weight of the edges from any vertex (not good workers) to
the good workers. Graph on the right-hand side: The red points indicates the weight
of the edges from any vertex (not good workers) to the good workers. (Color figure
online)

Good workers
* Bad workers

Good workers
* Bad workers

Fig.4. Shows the reputation of the Fig. 5. Shows the reputation of the
workers after the execution of 120 workers after the execution of 150
tasks. The algorithm allocate high rep- tasks. The algorithm allocate high rep-
utation to 70% of the good workers. utation to 80% of the good workers.

5 Related Work

In search for a good optimization algorithm in crowdsourcing we explore the
concept and method used for optimisation. [21] solves an optimization problem
that includes various factors as interest of different stakeholders in the CS and
trade-off between the quality and the quantity of the CS. [13,19] proposed a
trust evaluation model to differentiate honest workers and dishonest workers.
Classification of trust on the workers based on various contexts, i.e., type of task
and task reward amount. [8] designs matrices to calculate trust which includes
various parameters regarding software development process. [11,20] present a
model for deriving the correct answers along with difficulty levels of questions
and ability levels of participants in multiple problem domains. They are also
claiming that the joint inference of correct answers is the key attribute a high
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50% of the good workers and 1% of the
bad workers more reputation than the
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Fig. 7. Shows the algorithm allocate
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25 L] e o L]
. >
. o o
oo
20| ® « .
* o .
. L]

REPUTATION

L
o 50 100 150 200 250

WoRKers

Fig. 9. Shows the algorithm allocate
80% of the good workers and 2% of the
bad workers more reputation than the
average reputation of all workers in real

data.

level of accuracy. [17] designed a method for real-time, automatic prediction of
the quality of submissions to a knowledge base, their model immediately verifies
the accuracy of submission. [3,12] develop a fair incentive mechanism for crowd-
sourcing that enhances the operation of crowd sourcing for both task authors
and contributors. [4] develop an algorithm to search expertise in decentralised
social network and provide incentives for them. It is a general problem in crowd
sourcing to map the set of users and a set of binary choice questions with the
truthful answer. [6] generalized setting of the problem where the user—question
graph can be arbitrary. [14] presented a mechanism to induce truthful report for
crowd sourced consensus tasks. They devised a scoring system that infer hon-
est reporting of customer reviews and the evaluated honest review found to be
a Nash equilibrium. [15] Provided a solution for multi objective Optimization
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Problem using a distributed ACO (Ant Colony Optimization) algorithm based
on a crowd sourcing model. [7] solves Ant Colonies and the Mesh-Partitioning
Problem. Ant-Colony Optimization (ACO) is a heuristic design to optimize the
search highly motivated by the nature of real ant’s walking and food collec-
tion. [16] conducted an in-depth analysis of the reputation system, studying the
historical data they presented a method to predict the influential long-term con-
tributors. [18] detected local communities around a trusted node for the defence
of Sybil attack. [9] presented a model for worker’s decision that whether the
worker will compute the task.

6 Conclusions

In this paper, we have developed reputation management algorithm using the ant
colony optimization concept. In our experimental evaluation we have shown how
the algorithm is giving us separated sets of good workers and bad workers. This
is very helpful to identify the reputation of workers in crowd sourcing. More-
over, our customised real dataset for this experimental evaluation is a unique
one, using this we can extend our work for the comparison of centralised and
decentralised Stack Overflow’s reputation management. For future work, we are
implementing other optimization algorithms to analyse competitive characteris-
tics of our algorithms.
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