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ABSTRACT
With the ever increasing number of IoT devices getting connected,
an enormous amount of streaming data is being produced with very
high velocity. In order to process these large number of data streams,
a variety of stream processing platforms and query engines are
emerging. In the stream query processing, an infinite data stream
is divided into small chunks of finite data using a window operator.
Window size and its type play an important role in the performance
of any stream query engine. Due to the dynamic nature of IoT, data
stream rate fluctuates very often, thus impeding the performance
of query engines. In this work, we investigated the impact of any
changes in data stream rates over the performance of a distributed
query engine (e.g. Flink - https://flink.apache.org/). Our evaluation
results indicate a direct impact of any changes in stream rate and
window size over the performance of the engines. We propose
an adaptive and dynamic query window size and type selector to
improve the resilience of query processing engines. We consider
several characteristics of input data streams, application workload,
and resource constraints and proposes an optimal stream query
window size and type for stream query execution.
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1 IMPACT OF CHANGING STREAM RATE
AND QUERY WINDOW

Stream query processing is resource extensive due to the contin-
uous execution of queries over infinite data streams. In stream
processing for each time window, there is one execution of a query.
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Larger window size requires more memory consumption to store
intermediate results while a smaller window size requires more
query executions. Building an optimal query plan is challenging
due to the unpredictable and fluctuating rates of input data streams
[1, 2].

In this study, we evaluated the impact of any changes in stream
rate and window configurations over the performance of a stream
processing engine. Consider a scenario of fire alarm detection query
which processes two input data streams and observes their values at
a fix interval for any fire hazard detection. Input streams/sensors are
configured in such a way that they change their stream rate with the
changing values (e.g. if temperature rises beyond a certain threshold,
data observation rate is increased to ensure early detection of any
fire event). A fix window size will either impede the performance
of query engine due to large number of intermediate results or
miss/delay the detection of fire event due to the larger window
size. We conducted our experiments using two input data streams
which are streamed using Kafka (https://kafka.apache.org/)and
processed by Flink. Query results are stored in MongoDB as data
sinks. We evaluated three types of windows supported by Flink,
namely tumbling, sliding, and session. For the first input stream,
we varied it to 10 different stream rates i.e., 60, 120, 180, 240, 300,
360, 420, 480, 540, and 600 tuples per minute. For the second input
stream, we only produced one tuple per minute at a fixed rate. We
assess the latency (time consumed between the input arrival and
output generation) using two window sizes; (1) the small window
size which is one minute denoted by 1-min, 2) the large window
size is five minutes denoted by 5-min. To consider the queue delay
for Kafka, we calculated the latency of window-based join queries
executed on Flink as (1) Flink with Kafka (i.e., the time consumed
between the event observed until the output is generated) and (2)
Flink without Kafka (i.e., the time consumed between the event is
already ingested into Flink till the output is generated) which are
denoted by Flink w/Kafka and Flink wo/Kafka respectively.

As shown in Figure 1 and Figure 2, Flink w/Kafka and Flink
wo/Kafka latency of queries increases linearly with the increase
in stream rate for both 1-min and 5-min window sizes for three
window types. In particular, the Flink w/Kafka grows fast due to
Kafka delay of launched Flink Kafka consumers to consume the
input streams and Flink Kafka producers to send back the output
stream to Kafka. However, the average latency of Flink w/Kafka
over 5-min window is longer than the 1-min because the ingested
tuples (i.e., from the first minute to the fifth minute) wait until the
Flink window triggers its output. The larger window size can result
in large data size ingested into Flink, and when this large data is
processed it incurs higher processing time/latency. Our evaluation
confirms the impact of dynamic stream rate or other factors over
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the performance of the query engine. However, there is no one win-
dow size and/or type fitting all input stream rates. Our evaluation
strengthens the case for the need for adaptive window type and
size recommendation based on the input stream rate variation.

Figure 1: The latency of Flink join using window size 1-min.

Figure 2: The latency of Flink join using window size 5-min.

2 DYNAMIC QUERY WINDOW
CONFIGURATIONS

In this section, we describe our prototype for dynamic query win-
dow configurations depending on the changes in stream rate while
considering stream attributes, workload requirements, and infras-
tructure specifications. Our typical approach is to deploy the query
with an initial window configuration and then the query optimizer
configures the optimal query window with respect to the identi-
fied inputs. Behavior of streams and their rates is continuously
monitored to dynamically trigger deployment of any new optimal
query window configurations. The proposed prototype contains
the following three phases (see Figure 3):
Inputs Identification Phase. In this phase, the relevant inputs
are identified including the stream attributes such as stream schema
and historical stream statistics, the query workload requirements
such as latency and accuracy, and the infrastructure specifications.
WindowSelectionPhase.This phase contains the following three
components; 1) stream monitor 2) knowledge base and 3) query op-
timizer. A stream monitor includes a monitoring system to observe
different characteristics of the input stream, A knowledge base
contains the previously recommended window configurations for
different stream rates including window type and size and their rela-
tion to the identified inputs. We built the knowledge base/heuristics
to get a recommendation for window configuration with respect to

workload requirements including latency and data enrichment over
stream rate changes. The query optimizer contains cost estimator
and enumerator module. The cost estimator is implemented as a
cost model using different window configurations and identified
parameters such as historical statistics, application requirements,
resources constraints, and real-time analysis. The enumerator se-
lects the window configuration with a minimum cost which should
meet the application requirements while maintaining the resources
constrains.
Deployment Phase. In this phase, the new optimized stream query
will be deployed beside the current stream query (i.e., without
killing the running query) and the current query still runs until the
new one is warmed up.

Figure 3: The prototype of a dynamicwindow-based selector.

3 CONCLUSION
In this work, we investigated the performance of stream query
engines with respect to the dynamic external factors such as input
stream rate, application requirements, device limitations, and re-
source constraints. Our evaluation results build a strong case for the
need of adaptive stream processing techniques to effectively handle
IoT data streams. In the future, we plan to further extend our work
and augment our approach within top distributed stream processing
platforms. Additionally, we also intend to build shared knowledge
base containing statistics of the performance of IoT devices and
their stream rates, which can be utilized by multiple platforms and
applications to build robust and adaptive IoT applications.
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