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Abstract—Industry 4.0 is a recent trend of automation for
manufacturing technologies and represents the fourth industrial
revolution which transforms current industrial processes with the
use of technologies such as automation, data analytics, cyber-
physical systems, IoT, artificial intelligence, etc. The vision of
Industry 4.0 is to build an end-to-end industrial transformation
with the support of digitization. Data analytics plays a key role
to get a better understanding of business processes and to design
intelligent decision support systems. However, a key challenge
faced by industry is to integrate multiple autonomous processes,
machines and businesses to get an integrated view for data
analytics activities. Another challenge is to develop methods and
mechanisms for real-time data acquisition and analytics on-the-
fly.

In this paper, we propose a semantically interoperable frame-
work for historical data analysis combined with real-time data
acquisition, event detection, and real-time data analytics for
very precise production forecasting within a manufacturing unit.
Besides historical data analysis techniques, our middleware is
capable of collecting data from diverse autonomous applications
and operations in real time using various IoT devices, analyzing
the collected data on the fly, and evaluating the impact of
any detected unexpected events. Using semantic technologies we
integrate multiple autonomous systems (e.g. production system,
supply chain management and open data). The outcome of
real-time data analytics is used in combination with machine
learning models trained over historical data in order to precisely
forecast production in a manufacturing unit in real time. We also
present our key findings and challenges faced while deploying our
solution in real industrial settings for a large manufacturing unit.

I. INTRODUCTION

Within the vision of Industry 4.0, a key goal is to use
data analytics as the main driving force for businesses to
make intelligent decisions [7]. Traditional data warehousing
approaches used in industry rely on historical data to compile
reports, whereby a view of the past is used for making
better future decisions [2]. With the latest advancements in
the Internet of Things (IoT), it is now possible to collect
data in real time, not only related to key business process,
but also around the context and environmental conditions.
A combination of historical data, real-time business process
data and IoT-based contextual data can certainly improve the
outcomes of data algorithms [12]. A few middleware solutions
for real-time data analytics have been already presented within
a single domain such as smart cities [4] , or even across
multiple domains such as a combination of smart cities and

smart homes [6]. However, in smart manufacturing, mostly a
variety of in-house historical data is used to build intelligent
systems for manufacturing shop floors [13].

In this paper, we discuss a use case of production forecasting
for a manufacturing unit, and elaborate our experience and
approach to design a real-time data analytics-based produc-
tion forecasting tool. We have used historical data related
to production processes to train machine learning algorithms
(regression models) for better predictions about future pro-
duction goals. These production forecasting models help to
set realistic and optimal targets for production. Contrary to
traditional machine learning algorithms which consider only
historical data patterns, we support a real-time monitoring and
events detection approach which can detect abnormal events
(e.g. machine breakages, head count shortages, unavailability
of raw materials, etc.). We calculated the impact of all such
abnormal events and designed an integrated framework which
can adjust the hourly, daily and weekly production targets
accordingly. With integrated real-time monitoring techniques,
we can automatically detect the impact of any event and trigger
a notification about remedial actions. Having a real-time
integrated middleware provides optimal production forecasting
at very granular time intervals.

Our main objective in this paper is to share our experience
of applying modern IoT and data analytics approaches for
a traditional manufacturing unit. We discuss key data-related
challenges faced by the industry and then advocate how our
middleware can improve upon state-of-the-art technologies to
yield better results.

A Real-World Case Study - Real-Time Production Fore-
casting. We consider a real-world use case of a large biomed-
ical devices manufacturing company. The company produces
orthopedic devices and specializes in knee, hip and shoulder
joint replacements. The company has a large distributed infras-
tructure with multiple manufacturing units installed at different
locations within Ireland and globally.

A typical production line on a shop floor in these manu-
facturing units is sequential (e.g. an assembly line). In such
sequential processes, any kind of anomaly at any stage can
lead to a chain reaction or domino effect on subsequent pro-
cesses. The company has an internal Manufacturing Execution



System (MES), which keeps track of their daily processes
and stores relevant information at each processing step for
the produced products. The collected data is used to generate
periodic reports giving a summary of actual production during
a time frame in the past. These reports are used to set
future production targets. In the era of technology, businesses
are more and more interested in adaptive approaches which
can automatically adjust goals and targets based on current
progress, e.g. the system should be able to automatically re-
duce daily targets if there is any unexpected event like machine
failure [11]. In order to ensure the maximum utilization of
available resources daily or even hourly, production goals can
be adjusted based on the current situation. With IoT and sensor
data, it is now possible to collect data in real time. However,
current data collection systems have a few quite significant
issues, as mentioned below:

• Data collected during separate processes is not intercon-
nected and interoperable, resulting in silos of information
being created for each process. However, to ensure accu-
rate prediction, we need to integrate data from all relevant
processes.

• The collected data is only used for the generation of
periodic reports giving insights about past events, and
systems are currently unable to incorporate real-time data
and events for up-to-date reports and feedback.

• Domain knowledge is not properly captured, and usually
an experience-based learning approach is used by opera-
tional staff.A lack of domain knowledge makes it harder
to properly analyze such limited data.

• Sensors installed within various machines produce a lot
of real-time data. However, this data is often not stored
for later analysis, which results in a lack of seed data for
training data models for real-time analysis.

II. KEY CHALLENGES: INDUSTRIAL DATA ANALYTICS

In this section, we outline a few key challenges faced
by industrial data analytics systems, and discuss how our
approach can help to address these challenges.
Partial or Incomplete Data. Recent technology advances in
cloud storage and data analysis have created many opportu-
nities to utilize the whole gamut of data generated from a
factory floor. Technology advances can not only be used to
monitor the health of machine, but also to predict when a
machine is likely to fail or malfunction. However, in reality –
as simple as it sounds in principle – it is often difficult to come
by all the necessary data to make predictions, thus making
the collected data unsuitable for modeling. The main reason
behind not having enough data is due to manual paper-driven
processes where data is lost after a certain amount of time. In
order to avoid issues around partial and incomplete data, the
best option is to facilitate factory workers by providing very
easy-to-use interfaces for data collection. Factory workers can
create digital repositories of data which can be used by many
applications within a smart factory.
Lack of Comprehensive Data. Collecting partial shop floor
data leads to imprecise predictions and incomplete learning.

Therefore, it is necessary that the data should be collected
from all the relevant machines or processes of a factory. For
example, if we want to predict a production count accurately,
it is necessary that the data should be captured from all
production processes, starting from a raw material to final
cleaning and packing processes. A model that learns from such
rich data would be able to identify dependencies and may find
patterns to predict a production count accurately. In machine
learning techniques, it is usually not easy to estimate the right
data variables to train learning models, and mostly a hit-and-
miss method is used with different combinations of variables
to see which combination leads towards accurate results. With
smart factory concepts and the Industry 4.0 vision, a good
approach is to collect end-to-end data about all processes and
relevant variables. Having the maximum amount of data will
help modern machine learning and deep algorithms to get a
good understanding of patterns, trends and processes using a
complete and comprehensive set of data.

Lack of Domain Knowledge. When building a solution, a
clear understanding of business requirements and the domain
is necessary. For example, in order to build a model to predict
production counts accurately, significant domain expertise is
necessary in order to identify relevant points in the captured
data, and the tolerances for false positives and negatives.
Failure to predict accurately can be costly. Hence, data models
for predictive analytics must be carefully tuned with a high
level of assurance regarding the correctness of results with
high recall and precision. While a better understanding of
any business domain expertise is key, unfortunately little
effort is made to capture this domain knowledge. The best
way for capturing domain knowledge is to constantly engage
domain experts and facilitate solution developers by providing
them with tools to accurately capture and represent domain
knowledge. The Semantic Web and related technologies have
proven themselves to be useful techniques for capturing do-
main knowledge and for building intelligent applications that
utilize the resulting knowledge base.

III. BACKGROUND

Existing industrial analytics approaches are largely divided
into two broad categories [5]: offline analytics and online
analytics.

Offline Analytics. An industrial analytics process typically
starts with an offline exploration. The data from industrial
machines within a selected time period are collected. Most
commonly, the collected data is transferred to a storage
infrastructure for further analysis. Then, the stored data is
analyzed by applying various data analysis methods. From
various methods, data scientists select the best option that can
provide good, actionable insights.

A typical approach for an offline analytics process starts
with developing domain understanding, business requirements
and use cases. The second step is the data exploration step,
which is about understanding existing data sets first (using
various techniques such as data visualization) and refining



noisy data. The third step is about performing a dimensional
reduction of columns based on the objectives of the use case
and business requirements, learned from the first step. The
fourth step is focused on either selecting existing models
or building a new model. Various models may be tried and
applied to learn the outcomes. After several iterations, the
right model may be selected. Finally, the last step is about
validation. This involves presenting results to users and taking
feedback from them for further refinement, if necessary.

Online Analytics. As more and more data is generated from
industrial sensors and devices, transforming these streams into
actionable insights is a must-have need of various time-critical
Industry 4.0 applications such as predictive maintenance, real-
time production planning, and so on. Online analytics (or
stream analytics) starts with a set of input data stream(s),
sourced from industrial machines. On top of these data
streams, a query, specifying what (e.g., data, event, patterns)
to look for, is used to filter and aggregate data. After preparing
this data for analytics, the data can be ingested into analytical
models to derive insights from it. The transformed data can
then be consumed by applications for decision makers such as
in dashboards for real-time visualization.

IV. MIDDLEWARE FOR REAL-TIME EVENT DETECTION
AND PREDICTIVE ANALYTICS

In this section, we present our middleware that is designed
to enable real-time data analytics for smart manufacturing.
Figure 1 represents an architectural overview of our middle-
ware. We broadly divide our middleware into two main layers:
(i) a historical data analysis layer; and (ii) a real-time data
analysis layer. In the following subsections, we will discuss
some components of the middleware layers.

A. Historical Analysis Layer

This layer is mainly concerned with the processing of
historical data stored in the database. Some major components
in this layer are:

ETL: This component is responsible for establishing the
connection between our middleware and traditional databases
including relational databases, data warehouses and/or No-
SQL databases. We developed a set of standard connectors
which can directly query the relevant databases. We follow
traditional ETL (extract-load-transform) processes to acquire
data from existing data sources.

Data Pre-Processor: This module is responsible for a standard
set of data cleansing operations to perform anomaly detection,
missing value replacements, fault corrections or fixing out-of-
range values.

Machine Learning Module: This module acts as a core
component for historical data analytics. We built a generic
component which can perform data intake in the form of
vectors and can apply supported machine learning algorithms,
training the most suitable model based on application require-
ments.

Fig. 1. Middleware for Real-Time Data Analytics for Production Forecasting

B. Real-Time Data Analysis Layer

In this layer, we developed a set of modules which can iden-
tify real-time events and evaluate their impact. Components in
this layer are:

Event Detection: In this module, we define mechanisms for
real-time event detection when using streaming data. A set
of pre-defined thresholds are used for each type of product
and its associated production data for granular time intervals
(e.g. hourly in our case). The monitoring mechanism for real-
time event detection uses live production data, evaluates the
production data values against the pre-defined thresholds, and
reports an event if the production values deviate beyond the
thresholds. We also introduce a buffering mechanism which
ensures that events are generated only when the live production
data deviates beyond the threshold by a certain margin, e.g.
+/- 5 percent of daily average production.

Impact Calculation: This module is responsible for calculat-
ing the impact of any unexpected event on the performance
of overall factory operations. In our case, we calculated the
impact of each event by comparing the production data of
a day that had an unexpected event with the average daily
production. In cases where no historical data related to events
is stored, this module helps to gather new insights related to
the impact of each unexpected event.

Notification Generation & Delivery: We developed a notifi-
cation generation mechanism which can deliver a notification
to the relevant person whenever an unexpected event is de-
tected. We provided various methods of notification delivery
including pop-up notifications, alarms and a system-generated
email.

Targets Reconfiguration: This is a very crucial component
for modern autonomous and reconfigurable assembly lines
within a smart factory. Our middleware provides real-time
insights of a factory’s operation, which are used by this module
to automatically reconfigure machines, adjust daily targets,
and/or increase production capabilities based on the outcome
of the real-time analytics process.



Attributes Description

Scrap Number of units scrapped.

Rework Number of units in a given container that are sent
back for reprocessing through some operation steps.

Lead Time Total time for a full process from start to finish,
including any queue times.

Operation
Process Time

Actual time a container is being processed. (This
includes containers that are on hold.)

Operation Queue
Time

Actual time a container is queued for before entering
the next operation step.

Machine Uptime Time that a machine is in a productive state.

NCR
Occurrences

Any event where a container is non-conforming.

Containers On
Hold

When a container is place “On Hold”, pending
further investigation.

Sample Tests
Failed

Samples pulled for test purposes that have failed an
inspection step.

TABLE I
MOST SUITABLE VARIABLES FOR PRODUCTION FORECASTING

V. INDUSTRIAL CASE STUDY: REAL-TIME PRODUCTION
FORECASTING

In this section, we present our work on a real-world case
study with the use case already defined earlier. We discuss
various data processing and analytics steps conducted on
industrial data and implemented using our middleware.

A. Data Pre-Processing

The company has installed a database server for storing
relevant data on all processes and manufactured products. As
an initial data pre-processing step, we identified the relevant
variables related to production forecasting and selected a set of
dependent and independent variables. Table I lists the selected
variables and their descriptions. We executed various queries
to get data related to the selected variables. We used a query-
based approach in order to ensure the flexibility of the system
developed on top of the extracted data in such a way that any
future versions of the database can be easily linked to our
prediction tool.

After the execution of queries, our next steps were data
preparation and data cleansing. During these steps, we pre-
pared a matrix to contain the results of live queries executed
over the database, and stored the results in this data matrix
following a structure which can be easily used by machine
learning algorithms. The data matrix contains data related
to production operations and also data related to potential
influential variables. We manually analyzed the extracted data
to ensure that the prepared data has been properly cleaned
and is free of any discrepancies, missing values or incorrect
information. For the purposes of our analysis, we considered
three independent variables, namely (i) Scrap: the number of
units scrapped during production, (ii) Rework: the number of
units sent back for reworking, and (iii) Lead time: the overall
time it takes for a container to be processed between the first
and last operations. The extracted data spanned a period over

the last three years. We followed the 80%-20% approach for
the training and testing phases. Once the model is trained, we
use a validation set to check the accuracy of our trained model.

B. Regression-Based Approaches for Prediction

We applied different machine learning algorithms over the
collected data to identify the best performing algorithms,
depending on the nature of the data collected. We used
regression-based models such as Multiple Linear Regression,
Support Vector Regression, Decision Tree Regression and
Random Forest Regression. We analyzed data related to each
of the dependent variables in order to accurately predict the
values for the independent variable, e.g. the number of units
produced in this case (“Output”). All models were trained
using training dataset (80%), while a validation dataset (20%)
was used for testing.

Results of our experimental evaluation using the aforemen-
tioned four algorithms are presented in Figures 2(a), 2(b),
2(c), and 2(d) respectively. The results show a comparison
between the actual (blue lines) and predicted (orange lines)
values for the number of units manufactured during a period
of six months.

In order to select the most appropriate algorithm for our use
case, we used a Root Mean Square Error (RMSE) mechanism
to calculate the accuracy of an algorithm. RMSE shows how
close a trained model (or a regression line) is to a set of actual
points. This is achieved by taking the distances from the points
to the regression line (these distances are the ”errors”) and
squaring them before taking the root for the final value. The
smaller the RMSE, the closer the line is to being a best fit.

As we mentioned earlier, Scrap, Rework, Lead Time and
Output are the variables we considered for our use case. In this
case, Output is the dependent variable, while Scrap, Rework
and Lead Time are independent variables. The model is trained
using the independent variable data for a particular time period
and validated by comparing the predicted output to the actual
output for the same time period. Table II shows the results
of the RMSE score for each of the four regression algorithms
used. Based on the results, we selected the Random Forest
algorithm.

Regression Types RMSE
Multiple Linear 467.89
Support Vector 587.84
Decision Tree 434.54

Random Forest (n = 20)* 312.37
TABLE II

RMSE SCORES FOR DIFFERENT REGRESSION MODELS

C. Real-Time Event Monitoring and Event Notification

In our use case, there had been no prior data collected
that was related to detected events and their causation. We
set different thresholds and targets based on historical data
analyses and domain knowledge collected from existing expe-
rienced staff. We developed a set of tools to monitor, detect
and report events. We also assessed the impact of unexpected



(a) Multiple Linear Regression (b) Support Vector Regression

(c) Decision Tree Regression (d) Random Forest Regression

Fig. 2. Results of Predictions using Different Machine Learning Algorithms

events by comparing the average values with the live data after
the unexpected event. We give a brief description of all steps
below:

Target Definition & Threshold Setting. One of the goals of
real-time analysis is to be able to alert users when a particular
processing step deviates from a predefined target. Firstly, we
need to define realistic targets and use these targets as a
threshold for deviation detection. In a manufacturing unit, the
production is usually defined in terms of the number of parts
per minute (PPM), and this was the same for our industrial
use case. We defined targets in terms of PPM for each type of
product and process, however we leveraged the outcomes of
historical analyses and use the predicted/estimated values to
automatically define targets. In order to provide flexibility and
accommodate any unexpected situations, we also provided an
interface which allows shift supervisors to set goals for each
shift and also to log any reasons if a target is increased or
decreased from the automatically suggested target.

Event Detection & Event Logging. In our case study, the
definition of an event is a situation that happens whenever a
predefined threshold level is breached by a deviation. We used
the following notations and definitions for event detection:

• P: is a process which is defined as a set of work-flow
steps. Each P is assigned with a target T.

• R = { r1, r2, ..., rn } is a set of reasons which are
either defined by users or detected automatically by the
system. Each reason ri can have a positive or negative
effect on target T. Let f(ri, T ) be the effect value that
ri produces on T, where f(ri, T ) > 0 (f(ri, T ) < 0)

represents a positive (negative) effect.
Given a target T and a set of reasons R. Assume that each
reason in R holds a different level of effect on the overall
target, i.e. some reasons can adversely affect the overall target
more or less compared to another. Hence, different weights
are added to each reason. Any R can have either a positive
or negative effect on T, which can be calculated based on the
following formula:

f(R,T) =
∑n

i=1
wif(ri,T )∑n

i=1
Wi

> 0 (or < 0), where w1, ..., wn

are the weights of the contributions of reasons r1, ..., rn
respectively.

Given a target T, a set of reasons R, and two thresholds α,
β (α < β). An “Event” is detected whenever the value of R on
T surpasses the predefined value of threshold. More precisely,

f(R,T) < α and f(R,T) > β

Alerting & Notification. We developed two types of no-
tification methods for notification delivery. An alert system
was integrated within the progress dashboard application.
Supervisors were able to monitor the real-time progress of
the production unit by following a visual interface installed
at the shop floor. For managers, we provided an email-based
notification delivery mechanism, and a system-generated email
is forwarded to selected managers notifying them of any
unexpected events or breaches of thresholds defined to monitor
the productivity.

D. Capacity Planning Tool for Production Forecasting

We developed a capacity planning tool, which can be used
by managers to set long-term targets and goals related to



Fig. 3. An Interface for Accumulative Capacity Planning using Production
Forecasting

their production. As shown in Figure 3, the tool provides
results of production forecasting, where the blue line is the
actual production while the red line is the prediction. Using
this tool, the managers can adjust the values of different
dependent variables to analyze their data following different
what-if based assumptions. Historical data analyses were able
to provide an estimated value for each of the days as auto-
filled values, which can be changed by the user to see the
impact of the change.

VI. RELATED WORK

In this section, we describe existing technologies to build
applications that enable real-time event detection and perform
predictive analytics functionality. We divide these technolo-
gies into two broad categories: cloud-based and on-premise
solutions.

Cloud-Based Manufacturing. Recently, we have seen the use
of cloud services for building Industry 4.0 applications. Cloud-
based manufacturing is a centralized single-shop place that
allows manufacturers to apply industrial analytics on top of
stored data. For example, Microsoft Azure1 allows users to
store structured and unstructured data at any scale though its
“data lake” component. Azure’s stream analytics component2

is an event-processing engine that allows developers to ingest
and transform high volumes of data streamed from IoT de-
vices. Using these services, users can run different analytics
– from simple analytics such as data visualization to complex
analytics such as real-time analytics, machine learning, and big
data processing. Siemens has launched MindSphere3 (hosted

1http://bit.ly/azuremanu
2http://bit.ly/azurestre
3https://siemens.mindsphere.io/

on AWS), a cloud-based Industry 4.0 operating system, which
lets manufacturers connect their industrial machines to the
cloud and offers a marketplace (like an App Store) to use
deployment-ready industrial applications. GE has developed
Predix 4, an industrial Internet platform, which offers a market-
place to deploy various apps and services, including predictive
maintenance, anomaly detection, algorithms for intelligent
edge, and more.

Although cloud-based approaches reduce application devel-
opment efforts and maintenance costs by keeping the appli-
cation login at a centralized cloud service [8], [9], they may
not be suitable for Industry 4.0 applications, primarily because
of their high latency and high bandwidth requirement. They
also assume that sufficient connectivity exists between IoT
devices and cloud services, which may not hold true in reality
due to various reasons such as noisy factory environments and
factory setups in rural areas where the sufficient infrastructure
for high-speed Internet may not be in place. Even if we as-
sume that advanced technologies could address the bandwidth,
latency and connectivity issues (for example, edge analytics
solution such as AWS Greengrass5), there will always be
regulations and security concerns around sharing data.

On-Premise Solutions. For this category, a common approach
is to send sensor data over the network through proprietary
protocol standards (e.g., Modbus) or emerging standards (e.g.,
MQTT, OPC-UA, BLE). The data is collected at a gateway
device to perform common operations (e.g., aggregation, alerts
and control). Furthermore, the collected data is sent to more
powerful servers to be analyzed and to train the machine
learning algorithms for better decision making. A set of
tools6 from the Eclipse Foundation are available to build such
a system. We continue to leverage our existing tools and
middleware to build Industry 4.0 applications, for example,
IoTSuite [3], the Semantic Web-based tool SWoTSuite [10],
and other real-time analytics middleware [1].

VII. CONCLUSION

In this paper, we presented middleware for real-time data
analytics in combination with traditional historical data analy-
sis. The middleware has been successfully deployed in a large
manufacturing unit, and we can consider it as being a first
step for the company to build towards their larger vision of
full automation and Industry 4.0. In the future, we plan to
extend this middleware deployment at all processes within the
factory and design more business intelligence tools relying on
real-time data analytics.
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