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Abstract. Offline channels can improve the scalability of blockchains
by reducing the number of transactions in the blockchain. Offline chan-
nels provide Path-Based fund Transfer (PBT) service which allows a pair
of peers without a mutual channel to transfer fund between them using
paths in the channel network. In PBTs, peers allow a 3rd party to use
their channel for fund transfer in exchange for a transfer fee. There are
channels in the Bitcoin Lightning network which are designed to collect
such PBT transfer fees. An analysis of Bitcoin’s Lightning network re-
vealed the existence of hubs or nodes with very high degree in the channel
network. There are only 10 nodes who own more than 50% funds in the
Lightning network. These nodes are designed to facilitate PBTs among
peers with a low degree (number of channels) in exchange for transfer
fees. The emergence of hubs in channel network created the possibility
of collusion attack on the channel network where a group of hubs de-
liberately make few channels non-operational to prevent PBTs involving
a selected set of hubs (victims of the collusion attack). In this paper,
we model such collusion attack using cooperative game theory and using
Banzhaf index we classify the vulnerability of the hubs from the collusion
attacks. We propose a design principle of the channel network that can
decrease the possibility of collusion attacks.
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1 Introduction

Scalability is a prominent issue in the blockchain. While Mastercard processes
50000 transactions per second, Bitcoin processes 7 and Ethereum processes 15
transactions per second. Offline channel [15] is a useful tool to improve the scal-
ability of blockchains. A pair of peers only need to broadcast two transactions to
open and close a channel between them. A channel (theoretically) supports an
infinite number of transactions between them. Channels offer offline Path-Based
fund Transfer (PBT) service [12]. A PBT uses a path in the offline channel
network for fund transfer between two parties who do not have a channel. Ex-
amples of offline channel networks are Lightning Network for Bitcoin, the Raiden
Network[2] for Ethereum and SilentWhispers [12] for credit networks.
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Peers allow PBT execution through their channels in exchange for small
transfer fee. Hence PBT can be a source of revenue. While ordinary peers with
limited funds cannot establish a great number of channels for the purpose of
generating revenue, there are financial entities (with access to significant funding)
who can establish offline channels for the sole purpose of collecting the PBT
transfer fees. In Bitcoin Lightning network we witnessed this phenomenon. There
are only 10 nodes with control of more than 50% funds available in the Lightning
network. These nodes have a very high degree. We refer to these high degree
nodes as the hubs.

Hubs can improve the performance of the offline channels by reducing the
PBT completion time and improving the success rate of PBT execution. But
it brings a new form of collusion attack on the channel network. In a collusion
attack, a collusion (a group of hubs) can make few channels non-operational to
prevent PBTs among a set of targeted hubs. The targeted hubs are the victim
of the collusion attack. The objective of this paper is to investigate how such a
collusion attack can be executed in the channel network and develop a mechanism
that can lower the possibility of such anattack. We have the following results in
this paper:

1. We present a mathematical model of collusion attack on the channel network.
We use cooperative game theory and coalitional power index (Banzhaf in-
dex) [4, 3] to model collusion attacks. We model a collusion as a coalition
and Banzhaf index gives the estimation on the importance of a hub’s par-
ticipation in a collusion attack.

2. We present a model of the likelihood of collusion attack among the hubs in
a channel network using Banzhaf indices.

3. We analyze the possibility collusion attack in the Bitcoin’s Lightning net-
work. We found that there are 62 nodes who can execute collusion attacks
against 90% of their neighbors in the Lightning network.

The paper is organized as follows: In Section 2 we discuss related literature,
in Section 3 we present the collusion attack problem, in Section 4 we present
a method to evaluate the possibility of collusion attack in a channel network,
in Section 5 we present a method to lower the possibility of collusion attack,
in Section 6 we evaluate Bitcoin’s Lightning network to evaluate possibility of
collusion attacks and we conclude the paper in Section 7.

2 Related literature

In this paper, we study an attack model in the offline channel network. Offline
channels are designed to improve the scalability of blockchains. Examples of
such developments are as follows: Bitcoin Lightning network was proposed in
[15] which allows peers to create and transfer funds among them without fre-
quently updating the blockchain. Similar networks are proposed for Ethereum
[2] and credit networks [12]. A privacy-preserving payment method in the credit
network was proposed in [13]. Recent advances on the offline channel network
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are focused on the development of routing protocols for offline channels. Exam-
ples of such routing protocols are as follows: A method for anonymous payment
to improve privacy in PBT was developed in [9]. [10] proposed a decentralised
routing algorithm for the channel network.

Current research in the offline channel network for blockchains is focused
on developing better routing protocols for balancing the channels, privacy pre-
serving routing and fast routing protocols. But there is a lack of analysis on the
collusion attack that hubs in a channel network can orchestrate. In this paper we
analyze collusion attacks among the hubs in a blockchain peer to peer network.
The collusion attack is similar to eclipse attack. [11] analysed eclipse attack [5,
16] on Bitcoin network and it proposed appropriate countermeasures. [14] an-
alyzed a combination of selfish mining and eclipse attack on blockchain peer
to peer network. In this paper, we analyze collusion attack among hubs in the
blockchain network instead of analyzing eclipse attack on the entire peer to peer
network. We perform such analysis as we observed centralization of the channel
network. Our results can characterize the effect of centralisation in the channel
network. We will use the Banzhaf index to characterize collusion attacks. [4] an-
alyzed Banzhaf power indices for network flow games and [3] analyzed Banzhaf
power indices for network connectivity games. These research have proved that
it is NP-hard to compute the Banzhaf index.

3 Collusion attacks

First, we present an analysis of the Bitcoin’s Lightning network to illustrate the
existence of hubs in the channel network. Next, we present the model of collusion
attack on the channel network.

3.1 Hubs in Bitcoin Lightning network

We use the Bitcoin Lightning network data [1] to explain the existence of
hubs. The dataset has 2810 nodes and 22596 edges. The average degree of nodes
is 16. If we consider nodes with a degree more than 50 as hubs then, there are
168 hubs. Collusion is a coalition among the hubs which can prevent PBTs for
the remaining hubs. A collusion attack can be executed by creating a cut the
channel network.

Collusion is a group of hubs in the channel network who aim to prevent
PBTs between a pair of targeted hubs or victims of the collusion attack. We
will describe the model of collusion using a neighbourhood of a chosen hub. The
neighbourhood will be restricted by the maximum distance from the hub. This
will allow us to evaluate the potential of a hub to orchestrate a collusion attack in
its neighbourhood. In the next Section we will define such collusion and we will
define the potential of a peer to organise collusion as it Banzhaf index. Banzhaf
index measures the value of a hub in a coalition (collusion) as it evaluates if the
coalition will remain successful (to execute a collusion attack) if this hub leaves
the coalition.
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Fig. 1. Degree distribution of Bitcoin Lightning network data. It shows the existence
of very high degree nodes.

3.2 Models of collusion attack

Let G = (V,E) be a directed graph with n nodes V representing the hubs of the
channel network and m edges E representing the channels among the hubs. Let
Gi be the subgraph induced by the vertices who are at most k edges apart from
Vi ∈ V (including Vi) on the graph G where k is a positive integer less than
diameter of G. V i will denote the set of nodes at most k edges apart from Vi or
the set of vertices of the subgraph Gi.

We will define collusions w.r.t any specific node Vi to use the subgraph Gi.
A collusion is a subset of nodes V i such that:

1. It can produce a cut between a pair of hubs (or more pairs of hubs) in Gi.
This pair of hubs is the victim of the collusion attack as PBTs between them
will not be executed in Gi.

2. The hubs in the collusion have additional channels to allow the flow of tokens
through them.

We formally define collusion as follows:

Definition 1. In a hub network G = (V,E), a collusion C centred at Vi is a
subset of V i such that the following holds:

1. Vi ∈ C.
2. |C| ≤ δ where δ is a positive integer.
3. Let F ⊂ E be the set of edges originating from any Vx ∈ C.
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4. There exists a pair of nodes (Va, Vb) ∈ V i − C such that there cut F ′ ⊂ F
where the source is Va and sink is Vb.

5. There is a path in F − F ′ that connects every node in C to any node Vx ∈
V − V i.

Vi

V2

V1

V3

Va Vb

V4

Gi

Fig. 2. Example of a collusion centred at Vi that includes Vi, V1, V2, V3 and V4. The
collusion produces a cut between Va and Vb in Gi.

The explanation of the above notion of collusion attack is as follows:

1. We define a collusion w.r.t a node Vi. It helps us to define the set of collusions
where Vi can have significant contributions.

2. We restrict the size of collusions using the parameter δ.
3. We restrict the size of a subgraph that collusion can control by the parameter
k. If collusion can produce a cut between Va and Vb in the subgraph Gi then
it means there is no path in G with distance less than the distance between
Va and Vb in Gi. It means if the collusion blocks the paths between Va and
Vb in Gi then cost of PBT transfer between Va and Vb is increased by the
PBT transfer fee of at least one more channel. Hence a collusion attack can
at least increase the cost of PBTs between the victims even if the collusion
could not completely prevent any PBTs among its victims.

4. Finally, collusion must have a path to the hubs outside the subgraph Gi

despite closing certain channels to execute the collusion attack. It is needed
for executing the set of PBTs that the collusion allows.

Definition 2. Weight of a collusion C ⊂ V i is the number of pairs of nodes for
which the collusion can produce cuts.
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Vb --> VeVb --> Ve

Vc --> Vf

Vc --> Vf
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Fig. 3. The collusion is the set of hubs V1, V2, V3, V4, Vi and the victim of the collusion
are the hubs Va, Vb, Vc, Vd, Ve, Vf . Weight of the collusion is 3 as it disconnects 3 pairs
of hubs.

Vi 

V2

V1

V3

Va Vb

V4
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Fig. 4. The collusion is the set of hubs V1, V2, V3, V4, Vi and the victim of the collusion
are the hubs Va, Vb. Vi is a critical player as the collusion will fail if Vi leaves.
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Now we define collusion formation game as a cooperative game.

Definition 3. A collusion formation game produces a set of collusions denoted
as the set {(C, Vi)} where C ⊂ V i is the collusion centred at Vi as the result of
cooperation among the members of each collusion. The value of a collusion is
defined by the function θ as follows:

θ(C) =

{
1 if C can produce a cut for a pair of hubs (Va, Vb) ∈ V i − C
0 Otherwise

(1)

Now we define the importance of a hub in a collusion.

Definition 4. In a collusion (C, V i), a hub Vx ∈ C is a critical player if θ(C) =
1 and θ(C−Vx) = 0 indicating that the collusion becomes unsuccessful if Vx leaves
the collusion. The number of collusions centred at Vi where Vi is a critical player
is denoted by ∇i.

Now we define the Banzhaf index of a hub for a collusion formation game as
follows:

Definition 5. Banzhaf index of the player Vi in the collusion formation game
is

βi =
∇i∑

Vx∈V i ∇x
(2)

Note that we restrict the definition of the power of a hub within the subgraph
in which it forms collusion. This is because the same subgraph is valid where
the hub will be a victim of another collusion attack. Next, we will discuss the
algorithm to compute the Banzhaf index.

4 Potential of collusion attacks

In this Section, we discuss a method to evaluate the possibility of executing
collusion attack in a channel network. First, we will discuss the algorithm to
compute Banzhaf index for collusion attack as defined in the previous Section. It
should be noted that the computation complexity of computing Banzhaf index is
NP-hard [17]. In this paper, we will use Algorithm 1 to estimate Banzhaf indices.
The explanation of Algorithm1 is as follows:

1. In a subgraph Gi centerd at Vi, we compute the number of collusions (subsets
of nodes in Vi with maximum cardinality k) where Vi is a critical player.

2. It should be noted that if the number of nodes in Gi is x then the number
of collusions where Vi is a member is

x!

(x− k)!k!
− (x− 1)!

(x− 1− k)!k!
(3)

(x− 1)!

(x− 1− k)!k!
[
x

x− k
− 1] (4)
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Algorithm 1: Computation of Banzhaf index

Data: Hub network as G = (V,E)
Result: Banzhaf indices of V as {βi}
begin

Score← a vector of length n
for Each Vi ∈ V do

Gi ← induced subgraph on G by nodes within distance k from Vi

d1 ← degree of Vi in Gi

d2 ← is the diameter of Gi

Groups← a d1 × d2
N ← neighbours of Vi in Gi

j ← 1
for Each Vx ∈ N do

Groups[j, ]← outcome of a random walk of length k1
Remove edges in the path Groups[j, ] from Gi

j + +

for j in [1: size of set Groups] do
C ← j’th row of the matrix Groups
H ← created by deleting edges from these vertices with vertices
outside C
H ′ ← created by deleting edges from the vertices C − Vi with
vertices outside C

if Is.connected(H) == FALSE & Is.connected(H’) == TRUE
then
Score[i]← Score[i] + 1

for Each Vi do

βi = Score[i]∑
Vx∈V i Score[x]
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The number of possible collusions which includes Vi is very large. It is com-
putationally difficult to test all such collusions to check if Vi is a critical
player. Hence instead of checking all collusions we only check the collusions
created by a set of random walks from Vi.

3. For each node Vi we create x random walks where x is the degree of Vi in
the graph V i.

4. For the set of vertices in each such random walk,
Case 1 We compute the if the deletion of the edges from the set of vertices

in each random walk (treated as collusion) to the remaining vertices of
V i (victims of the collusion attack) disconnects the graph Gi.

Case 2 Next, we compute if such disconnection of the graph is possible
without Vi.

5. Vi is a critical player if Case 1 is true and Case 2 is false. Using such infor-
mation we compute the Banzhaf indices for all hubs.

Now we define the potential of collusion attack in the channel network as
follows:

Definition 6. The potential of collusion attack in a channel network can be
estimated by the standard deviation of Banzhaf indices of hubs. High standard
deviation indicates that there are few hubs who can easily execute collusion attack
while the remaining hubs are unlikely to execute collusion attack.

5 Method to reduce possibility of collusion attacks

Vi

V2

V1

V3Va Vb

Vx

Gi

Fig. 5. Relation between degree of an attacker and probability of successful attack: it
shows the worst case scenario for Vi as a critical player to execute a collusion attack
against Va and Vb.
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Theorem 1. The probability that a hub can successfully execute a collusion at-
tack increases as its degree increases.

Proof. Let the collusion C is the set Vi∪ (V1, V2, . . . , Vx) and it wants to execute
a collusion attack against the pair of hubs (Va, Vb) in the subgraph Gi. The
attack scenario is illustrated in Figure 5. Let Va is at a distance k − 1 from Vi
and Vb is adjacent to Vi. In this scenario, we will estimate the size of collusion
needed to execute an attack against the pair of hubs (Va, Vb) by Vi. As shown in
Figure 5 the set of collusion is V1, . . . , Vx. In the worst case, the number of such
collusion is the number of leaf nodes of a tree from Va with depth k − 2. Hence
the number of nodes is

X = 1 + d+ d2 + · · ·+ dk−2 =
dk−2 − 1

d− 1
(5)

where d is the average degree of the hub network. Hence in the worst case Vi
needs cooperation from dk−2−1

d−1 hubs to attack the pair (Va, Vb). Note that, Vi
can have di neighbours (degree of Vi in Gi). The relation between degree of Vi
and the probability that Vi can attack on the pair (Va, Vb) is as follows:

1. Vi may execute the attack if di <
dk−2−1
d−1 . It means if Vi has sufficient number

of neighbours to form collusion then it can orchestrate such an attack.
2. The probability that Vi has can execute the attack depends on the probability

that each node V1 to Vx has Vi as its neighbour. The probability that the

node V1 is a neighbour of Vi is di
d−1
dk−1 where dk−1

d−1 is the estimated number

of edges in Gi.
3. Hence the probability that Vi can execute the attack is [di

d−1
dk−1 ]X

4. Thus the probability that Vi can successfully attack the pair of hubs (Va, Vb)
increases with the degree of Vi.

Theorem 2. If hubs of the hub network have a uniform degree then, Banzhaf
indices are approximately equal.

Proof. Note that Banzhaf index of a hub depends on the number of collusions
where it is a critical player. As proved in the previous theorem, higher the degree
higher the probability that a hub can successfully execute a collusion attack. It
proves that if the degree of nodes is equal then they will be equally likely to
execute successful collusion attacks. Hence their Banzhaf indices will be approx-
imately equal.

We propose that uniform Banzhaf indices may prevent collusion attacks in
the hub network. This claim is based on the following observations:

1. In order to detect collusion attack, a hub must observe where its PBT re-
quests are denied in the network. If the network is synchronous then it is a
trivial problem. But in an asynchronous network, such detection problem is
non-trivial. The collusion detection problem can be formulated as the prob-
lem of finding black holes in the network. Block holes are the nodes in a
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network who destroy mobile agent visiting the node. The collusion detection
problem can be formulated as a block hole search problem where mobile
agents are network probes. The complexity of this search problem is NP-
hard [7, 6]. But several approximation algorithms exist for both synchronous
and asynchronous networks[8].

2. If the Banzhaf indices are approximately equal then it means if hub Va can
attack hub Vb then Vb can also execute a collusion attack against Va.

3. Hence equal Banzhaf indices will bring an ‘equilibrium’ in the sense that if
Va attacks Vb then Va can reciprocate such action. Hence it will prevent the
hubs from orchestrating collusion attacks.

6 Evaluation with Bitcoin Lightning network

In this paper, we discussed a model of collusion attack in the offline channels
for blockchains. We proved that (a) hubs will have approximately equal Banzhaf
indices if their degrees are the same and (b) if hubs have equal Banzhaf indices
then they are less likely to initiate a collusion attack. We measure the uniformity
of Banzhaf indices as its standard deviation. In this Section, we perform an
experimental evaluation of Algorithm 1 and we measure the Banzhaf index of
nodes in the Bitcoin Lighting network. We have the following objectives in this
experimental evaluation:

1. Prove the correctness of Algorithm 1 which measures the Banzhaf index.
2. Measure the Banzhaf indices of hubs in the Lightning network.
3. Explore the correlation between the uniformity of Banzhaf indices and di-

ameter of a channel network.

We use Bitcoin Lightning network data [1] to analyze collusion attacks. [1]
provided an API to access the Lightning network data. The downloaded data
is in JSON format and RJSONIO package was used to process the data. The
data contains (a) information about each node, i.e., public key and (b) network
structure as the edge list. The data was accessed on 1st March 2019. It should
be noted that the current size of Lightning network is slightly larger. The data
contains the network structure of the Lightning network and it has the following
properties:

# Nodes # Edges Avg. Degree Min Degree Max Degree

2810 22596 16 1 961

In the experimental evaluation, we execute Algorithm 1 using the above data
as the input. First, we will evaluate the accuracy of Algorithm 1. We have proved
that a peer’s Banzhaf index depends on its degree. Greater the degree higher
the Banzhaf index. We create a hub network by selecting nodes with a degree
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in the ranges (30, 100) from the Lightning network data. In this network, we
execute Algorithm 1 to estimate the Banzhaf indices of the nodes. The result of
such estimation is shown in Figure 6. It shows that as degree of hubs decreases
the Banzhaf index also decreases. Figure 6 provides empirical evidence for the
accuracy of Algorithm 1.
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Fig. 6. The Figure shows the relationship between the Banzhaf index and degree of
the nodes(normalized to the range [0,1]).

Next, we explore the relation between the diameter of a channel network
and the uniformity of Banzhaf indices. We generate 17 hub networks from the
Lightning network by selecting nodes with minimum degree 30 and maximum
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degree 50, 55 . . . 135 respectively. We increase the maximum degree of hub net-
work to increase the diameter of the network (a subgraph of the hub network)
as we want to explore the relationship between the Banzhaf index and the net-
work diameter. We use Algorithm 1 to compute Banzhaf indices of all nodes in
each such hub network. We observe (shown in Figure 7) that as we increase the
maximum degree of the subgraph generated from the hubs, the diameter of the
graph becomes low. As the diameter becomes low it indicates graph converges
towards a complete graph. Hence it becomes difficult to generate cuts in such a
graph. We keep k (diameter of the collusion graph) as 2 for all datasets. We want
to analyze the possibility of collusion within a hub’s immediate neighborhood,
hence we use diameter 2 because the average diameter of these graphs is 4.5.
The computed Banzhaf indices show that power indices become more uniform
as the graph evolves towards a complete graph. It means it difficult to execute
collusion attacks in channel network if the diameter of the graph becomes small.
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Fig. 7. Relation between the Banzhaf index and diameter of the network. The unifor-
mity of Banzhaf increases as the diameter of the network decreases.

Next, we analyze the vulnerability of Bitcoin Lightning network against col-
lusion attack. We use the following metric to measure such vulnerability per
node as :

vulnerability w.r.t node vi =
# of neighbours with Banzhaf Index less than vi

Size of neighbourhood of vi
.

(6)
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We found that there are 62 nodes (shown in Figure 8) with vulnerability
metric at least .9. This means there are 62 nodes who can execute collusion
attacks against 90% of their neighbors in the Lightning network.
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Fig. 8. Vulnerability metric for Lightning network. The left hand figure shows the
vulnerability metric for each node in Lightning network and the right hand figure
shows the number of neighbours with less Banzhaf index for each node in the Lightning
network.

7 Conclusion

In this paper, we analyzed collision attacks among the hubs of offline channel
networks. We have defined the potential for collusion attacks using Banzhaf
indices. We have shown the correlation between uniformity of degree of the hub
network and Banzhaf indices. Using experiments on Bitcoin’s Lightning network
we have shown that as the hub network evolves towards a complete graph it
becomes more difficult to create cuts in the graph with a fixed number of edges
and hence it increases the uniformity of power indices.
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