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Abstract. In this paper, we describe a deep neural network architecture
for domain-aware sentiment classification task with the purpose of the
sentiment classification of product reviews in different domains and eval-
uating nine pre-trained embeddings provided by the semantic sentiment
classification challenge at the 15th Extended Semantic Web Conference.
The proposed approach combines the domain and the sequence of word
embeddings of the summary or text of each review for Gated Recurrent
Units (GRUs) to produce the corresponding sequence of embeddings by
being aware of the domain and previous words. Afterwards, it extracts
local features using Convolutional Neural Networks (CNNs) from the
output of the GRU layer. The two sets of local features extracted from
the domain-aware summary and text of a review are concatenated into a
single vector, and are used for classifying the sentiment of a review. Our
approach obtained 0.9643 F1-score on the test set and achieved the 1st
place in the first task of the Semantic Sentiment Analysis Challenge at
the 15th Extended Semantic Web Conference.

1 Introduction

Sentiment analysis plays an important role in many domains such as predicting
the market reaction in the financial domain [4]. Therefore, many approaches have
been proposed for classifying sentiment labels as well as predicting sentiment
scores. With the advance of deep learning [13] approaches such as Convolutional
Neural Networks (CNNs) [14] for processing data in the form of multiple arrays,
or Recurrent Neural Networks (RNNs) such as Long Short-Term Memory neural
networks (LSTMs) [7] for tasks with sequential inputs, many research areas have
made a significant progress. These research areas include computer vision [5,12],
natural language processing (NLP) [9,10], and recommender systems [19].

Recently, many approaches [3,16] leveraging deep neural networks (DNNs)
have been proposed for sentiment analysis as well. For example, an ensemble
approach using several DNNs such as CNNs and LSTMs proposed by [3] won



one of the sentiment prediction tasks on Twitter1 at the sentiment analysis
challenge SemEval20172.

In this paper, we also propose a DNN architecture for the embedding eval-
uation and semantic sentiment analysis challenge held in conjunction with the
15th Extended Semantic Web Conference3. Our proposed approach achieved the
best performance compared to the solutions from the other participants in the
first task of the challenge.

The first task of the challenge has two main goals as follows:

1. Given nine pre-trained word embeddings and two baseline embeddings, the
objective is to evaluate these embeddings in the context of sentiment classi-
fication for domain-specific reviews.

2. Propose a sentiment classification model and compare the classification per-
formance on a test set with the models proposed by the other participants.

To this end, the challenge provides a training dataset which consists of one mil-
lion reviews covering 20 domains. Each training instance consists of a summary,
review text, the domain of the review, and its sentiment label (i.e., positive or
negative).

Each participated system can train their systems based on the training set
and predicts the sentiment labels for the reviews in the test set provided by the
organizers. Those systems are evaluated by the F1-score on the test set, which
can be defined as follows:

F1 =
2 × precision × recall

precision+ recall
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

where tp ∈ TP (true positive) is defined when a sentence is correctly classified as
positive, and fp ∈ FP (false positive) denotes when a positive review is classified
as negative. A true negative (tn ∈ TN) denotes when a negative sentence is
correctly classified as negative, and a false negative (fn ∈ FN) denotes the case
of a negative sentence is classified as positive.

2 System Description

In this section, we describe the architecture of our proposed system using
domain-aware GRUs and CNNs with pre-trained word embeddings for the sen-
timent classification of reviews. Figure 1 provides an overview of our proposed
model for the semantic sentiment analysis challenge.
1 https://twitter.com.
2 http://alt.qcri.org/semeval2017/index.php?id=tasks.
3 https://2018.eswc-conferences.org/.
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Fig. 1. The proposed system architecture for predicting the sentiment of a given review.
A review is represented as r = {s, x, dr} where s, x, and dr denote the summary, review
text, and the domain of r, respectively. First, we represent the text x of a review
as a sequence of embeddings: {Edr , Ew1 , . . . , Ewm} where Edr denotes the domain
embedding of r, and Ew1 , . . . , Ewm denote the set of word embeddings for the sequence
of words in x. Afterwards, the sequence of embeddings is feed into the GRU layer. The
output of this GRU layer is a sequence of embeddings with the memory of the domain
as well as previous words, and is used as an input to a CNN layer to extract local
features of the text x. Similarly, we extract the local features of the summary of r.
Finally, the local features of the text and summary of a review are concatenated, and
fed into a dense layer in order to predict the sentiment label of r.

We represent each review r as two parts using the review text and summary.
For example, the first part consists of the domain of r (dr), and the sequence of
words {w1, . . . , wm} in the text of r. The second part consists of the domain of r
(dr), and the sequence of words {s1, . . . , sn} in the summary of r. Each training
instance can be represented as ti = {ri, yi} where y denotes the sentiment label
(i.e., 1 or 0) of r. As we can see from Fig. 1, there are mainly four layers in our
proposed model. The first part of review with its domain and text goes through
the following layers.



Look up. The look up layer transforms a review r into the domain and the
sequence of word embeddings: {Edr , Ew1 , . . . , Ewm} where Edr denotes the
domain embedding of r, and Ew1 , . . . , Ewm denote the set of pre-trained word
embeddings for the sequence of words in r ’s text. The domain embeddings are
also parameters of our model and will be learned through the training process.

GRU layer. The sequence of embeddings {Edr , Ew1 , . . . , Ewm} for a review
from the look up layer is used as an input to a Gated Recurrent Unit [2] (GRU)
layer. This layer aims to transform the domain and word embeddings of a review
r into a sequence of embeddings (hidden states in GRUs) for r where each
embedding at position k is aware of the domain as well as the previous words.
GRUs and LSTMs are RNNs that have been designed to resolve the issue of
vanishing gradient problem in the vanilla RNNs. We opted to use GRUs instead
of LSTMs as the former one has fewer number of parameters to tune, which
is suitable for the limited computing resources with a large number of training
instances. We provide more details about GRU in Sect. 2.1.

CNN layer. Recurrent Neural Networks such as GRU is good at captur-
ing the long-term dependencies of words, e.g., capturing sarcasm of a text. In
contrast, the CNN layer aims to extract local features which are useful for the
sentiment classification. CNNs apply a set of convolutional filters to the input
matrix with a filtering matrix f ∈ Rh×d where h is the filter size. This filter size
denotes the number of the output embeddings from the GRU layer it spans. In
our proposed model, we used {3, 4, 5} as the filter sizes and 200 filters for the
first part of a review with its review text. For the second part of a review with
its review summary, we used {1, 2, 3} as the filter sizes and 100 filters in total.
We use Ct and Cs to denote the local features extracted from the two parts of
a review with its text and summary. We provide more details about CNNs in
Sect. 2.2.

Concatenation layer. Similar to the first part of a review, the second part
of it with its summary also goes through the abovementioned layers. In the
concatenation layer, the outputs from both parts are concatenated together to
represent the review: C = [Cs, Ct]. This vector of the review is used as an input
to a dense layer.

Dense layer. Finally, there is a dense layer with 80 hidden nodes (D) to
shrink the dimension of C to 80 dimensions. The dense layer is then used for
classifying the sentiment of a review.

y′ = W ·D + b (4)

where W is the weight parameters for this dense layer and b denotes a bias term.
Loss function. We use the cross-entropy as our loss function, and the objec-

tive is to minimize the loss over all training examples.

L =
∑

i

(yi × −log(σ(y′
i)) + (1 − yi) × −log(1 − σ(y′

i))) (5)

where σ is the sigmoid function, σ(y′
i) is the predicted sentiment score, and yi

is the ground truth sentiment label of i -th training instance.



2.1 Gated Recurrent Units

Gated Recurrent Units along with LSTMs are part of the RNN family, which
is designed to deal with sequential data. For each element of the sequence (e.g.,
each word of a review), a vanilla RNN uses the current element embedding and
its previous hidden state to output the next hidden state:

ht = f(Wh · xt + Uh · ht− 1 + bh) (6)

where ht ∈ Rm denotes the hidden state at t-th element (or at time step t),
xt is the current element embedding, Wh ∈ Rm×d and Uh ∈ Rm×m are weight
matrices, bh denotes a bias term, and f(·) is a non-linear activation function
such as tanh. One main problem of this vanilla RNN is that it suffers from the
vanishing gradient problem.

This problem has been solved in LSTMs with a memory cell instead of a
single activation function. GRUs (see Fig. 2) can be seen as a variation on the
LSTMs but with a smaller number of parameters, and both GRUs and LSTMs
produce comparative results in many problems. To resolve the vanishing gradient
problem of a vanilla RNN, GRUs use update and reset gates, which control the
information to be passed to the output. The formula for the output gate is as
follows:

zt = σ(Wz · xt + Uz · ht− 1) (7)

where Wz and Uz are weight matrices and σ denotes the sigmoid function. This
gate determines how much information from the past can be passed along to the

Fig. 2. The architecture of a Gradient Recurrent Unit based on the figure from https://
towardsdatascience.com/understanding-gru-networks-2ef37df6c9be.



future. In contrast, the reset gate decides how much information from the past
should be forgotten using the formula as below.

rt = σ(Wr · xt + Ur · ht− 1) (8)

where Wr and Ur are weight matrices of the reset gate. The output of the reset
gate is used to calculate the current memory content as follows:

h′
t = tanh(Wh · xt + rt ⊙ Uh · ht− 1) (9)

where Wh and Uh are weight matrices. The element-wise product of rt (which
ranges from 0 to 1) and Uh · ht− 1 determines how much information to remove
from the previous time steps.

Finally, the current hidden state is determined by using the current memory
content h′

t and the previous hidden state ht− 1 with the update gate.

ht = (1 − zt) ⊙ h′
t + zt ⊙ ht− 1 (10)

Based on these formulas, we can observe that the vanilla RNN can be see as
a special case of a GRU when zt = 0 and rt = 1.

2.2 Convolutional Neural Networks

Here we give an overview of CNNs. A smaller version of the used model is
presented in Fig. 3. The input of CNNs in our model is the output of the GRU
layer, which consists of a sequence of hidden states. We use GRU matrix G ∈
Rm×d to denote this sequence of hidden states. In contrast to using the sequence
of word embeddings as an input, using those hidden states obtained through the
GRU layer embodies the information from previous words as well as the domain
of a review.

We then apply a set of convolutional filters to the GRU matrix with a filtering
matrix f ∈ Rh×d where h is the filter size which denotes the number of hidden
states it spans. The convolutional operation is defined as follows:

ci = f

(∑

j,k

wj,k(G[i:i+h− 1])j,k + bc

)
(11)

where bc ∈ R is a bias term, and f(·) is a non-linear function (we use the ReLu
function in our model). The output c ∈ Rm− h+1 is a concatenated vector which
consists of ci over all windows of hidden states in G. We can define the number of
filtering matrices which can be applied to learn different features. As mentioned
earlier, we used {3, 4, 5} as the filter sizes and 200 filters for the first part of
a review with its review text. For the second part of a review with its review
summary, we used {1, 2, 3} as the filter sizes and 100 filters in total.

In order to extract the most important feature for each convolution, we use
the max− pooling operation cmax = max(c). Therefore, this operation extracts
the most important feature with regardless of the location of this feature in the



Fig. 3. The architecture of a smaller version of the used CNNs. Figure is taken from
[20] with some modifications.

sequence of hidden states. Afterwards, the cmax of each filter is concatenated into
a single vector cmax ∈ Rp where p is the total number of filters. For example,
the total number of filters for the first part of a review is 3 × 200 = 600, and
that for the second part of the review is 3× 100 = 300 in our model. These two
vectors are concatenated together in the concatenation layer as we can see from
the Fig. 1 which is followed by a dense layer.

2.3 Training

This section provides some details about training our proposed model. The
parameters to be learned through the training process include the domain embed-
dings, the parameters associated with GRUs and CNNs as well as the nodes in
the dense layer.

Validation set. In order to train our proposed model, we used 10,000 out of
the 1 million provided reviews which are evenly distributed over 20 domains as



the validation set. Therefore, the validation set consists of 500 training instances
for each domain where 250 of them are positive ones and the rest are negative
ones.

Training. We train our proposed model nine times with each of the nine
word embeddings provided. As we also aim to evaluate these pre-trained word
embeddings, we do not further optimize the weights of these embeddings, i.e., the
weights of word embeddings are fixed. To learn the parameters of our proposed
approach for minimizing the loss, we use a mini-batch gradient decent with 128
as the batch size and use the Adam update rule [11] to train the model on the
training set, and stop the training if there is no improvement on the validation
set within the subsequent 10 epochs.

Regularization. We further use the dropout [18] for regularization with a
dropout rate p = 0.5. Dropout is one of the widely used regularization approaches
for preventing overfitting in training neural network models. In short, individual
nodes are “disabled” with probability 1 − p, and then the outputs with the set
of disabled nodes of a hidden layer are used as an input to the next layer. In this
way, it prevents units from co-adapting and forces them to learn useful features
individually.

3 Results

In this section, we discuss the results on the validation set using our model with
different word embeddings, and the results on the test set compared to all the
participated systems.

3.1 Results on the Validation Set

Table 1 shows the best classification accuracy (accuracy = TP+TN
TP+FP+TN+FN )

on the validation set using the nine provided embeddings and the two baseline
ones using our proposed architecture. The provided embeddings are denoted as
emb {dimensionality of word embeddings} {epochs for training}.

Instead of using each model with different word embeddings, we further inves-
tigated an ensemble approach which uses a simple voting scheme for 11 variants
of our proposed model with different word embeddings or training epochs. The
final sentiment classification is determined by the votes from the 11 classifica-
tion results where the sentiment label with a higher number of votes is selected.
Based on the results, we have the following observations:

– The classification performance with the nine provided embeddings outper-
forms the one with the two baseline embeddings.

– The accuracy of sentiment classification increases with a higher dimensional-
ity or number of epochs of the provided word embeddings.

– Overall, emb 512 50, which uses 512 as the dimensionality of word embed-
dings and was trained for 50 epochs, provides the best performance among
all embeddings.

– The simple ensemble approach improves the classification accuracy further
compared to using a single word embeddings.



Table 1. The accuracy of sentiment classification on the validation set with the nine
provided embeddings.

Embedding Accuracy

Glove 0.9525

amazon we 0.9122

emb 128 15 0.9578

emb 128 30 0.9560

emb 128 50 0.9544

emb 256 15 0.9576

emb 256 30 0.9576

emb 256 50 0.9578

emb 512 15 0.9568

emb 512 30 0.9598

emb 512 50 0.9605

Ensemble approach 0.9657

Table 2. The comparison of our approach and the other participated ones for the
sentiment classification on the test set.

Year Ranking F1-score

2018 #1 (our approach) 0.9643

#2 0.9561

#3 0.9356

#4 0.9228

#5 0.8823

#6 0.8743

#7 0.7153

#8 0.5243

2017 #1 [1] 0.8675

#2 [6] 0.8424

#3 [8] 0.8378

#4 [15] 0.8112

3.2 Results on the Test Set

The final test set released by the challenge organizers consists of 10,000 exam-
ples, which are evenly distributed over 20 domains. Table 2 shows the sentiment
classification results on the test set from all the participated systems in this year
and those in the last year [17], which are released by the challenge organizers.

As we can see from the table, our proposed approach provides the best per-
formance among all participants in terms of F1-score. In addition, we observe



that the performance of the participated systems for this year is significantly
improved compared to that for the previous year.

4 Conclusions

In this paper, we presented our system architecture for the Semantic Sentiment
Analysis challenge at the 15th Extended Semantic Web Conference. Our goal was
to use and compare pre-trained word embeddings with proposed architecture,
which combines the advantages of both GRUs and CNNs for classifying the
sentiment labels of domain-specific reviews. For future work, the current model
can be improved by using bi-directional GRUs to learn the hidden states of GRUs
based on both previous and post information. In addition, the ensemble approach
with a hard voting scheme can be replaced by another ensemble approach such
as a soft voting scheme.
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