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ABSTRACT

The ever-increasing growth of the Internet of Things (IoT) has
attracted a considerable amount of research attention from the
Semantic Web community in order to address the challenge
of poor interoperability. However, our survey of research
work has shown that the goal of providing an intelligent pro-
cessing and analysis engine for IoT has still not been fully
achieved. Central to this problem is the requirement for a
semantic spatio-temporal query processing engine that is able
to not only analyze spatio-temporal correlations in a massive
amount of IoT data, but that can also generate an effective
query plan for a given query to execute in a timely manner.
Needless to say, query planning for the multidimensional data
like IoT is a costly operation. The most known techniques are
either based on the cost model or by using spatio-temporal
data statistics and heuristics. In this paper, we propose an
alternative solution that uses query similarity identification in
conjunction with machine learning techniques to recommend
a previously generated query plan to the optimizer for a given
query. Our approach also aims to predict the query execution
time for the purposes of workload management and capacity
planning. Our extensive experiments indicate the efficiency of
our learning approach with an impressive prediction accuracy
on test queries.
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INTRODUCTION

In recent years, we have witnessed a rapid increase in the num-
ber of IoT (Internet of Things)-related datasets that are avail-
able. To fully realize the potential benefits of these datasets,
two fundamental requirements need to be addressed, namely
interoperability and effective data management. Fortunately,
a suite of technologies developed in the Semantic Web [6]
effort, such as the RDF model, Linked Data [7], and SPARQL
[23], can be used as some of the principal solutions to help the
IoT from the challenge of poor interoperability. However, in
this context, providing an effective data management system
for IoT that can combine the benefits of Semantic Web prin-
ciples, and also be able to deal with the “big spatio-temporal
data” nature of 10T, is still an open challenge. Central to this
problem is not only knowing how to store a massive volume
of IoT data, but also being able to answer a complex spatio-
temporal related query on large-scale IoT datasets in a timely
manner. This requires a query processing engine that has to
be “smart” enough to determine an efficient way for execut-
ing the given query and that can predict the query behavior
in order to take a proper and well-informed decision. Addi-
tionally, because spatio-temporal contexts play a vital role in
IoT, spatio-temporal computation support is also a mandatory
requirement for the engine.

Researchers in the Semantic Web community have proposed a
substantial number of works that focus on query optimization
in conjunction with supporting spatio-temporal computation.
In many of these approaches, for a given query, the query
optimizer will firstly analyze the correlation of the spatial,
temporal and semantic aspects, and find the best execution
plan based on either the complex cost model or by using data
statistics and heuristics. However, these approaches have only
proven to be effective in a centralized system where the opti-
mizer can easily estimate the cost of all spatio-temporal query
execution operations. In the context of a semantic IoT data
management system, which requires a distributed integration
spatio-temporal query processing engine, these existing query
optimization techniques will not be sufficient because of the



following reasons: (1) defining a cost model which has to ex-
press all spatio-temporal aspects of [oT data and is adaptable
to changes in the underlying environment (data communica-
tion costs, characteristics of the network, cluster configuration,
etc.) is a costly task and has not been fully addressed; (2) the
spatio-temporal statistics of [oT datasets are often missing due
to the (multidimensional) complexity and high-frequency up-
dates of the data. They are expensive to generate and maintain.

An alternative solution to the above problem is a learning
optimizer. The idea of this approach is to reuse existing ex-
ecution plans to execute similar given queries. In this paper,
where we continue our work from [24] and draw upon the
ideas in [13], we propose a prediction framework that uses
similarity identification between spatio-temporal SPARQL
queries as well as machine learning techniques to predict a
suitable query execution plan and query execution time for a
new query. Specifically, the framework can accurately predict
an execution plan that consists of the execution order of all the
physical spatio-temporal operators. Moreover, we also aim
to predict the query execution time to help the query engine
have a better understanding about the query behavior prior to
query execution. Accurately predicting the query execution
time enables us to optimize our costly cloud infrastructure by
rescheduling or preventing long-run queries that might cause
too much resource contention or that will not be completed by
a particular deadline. In summary, our main contributions are
as follows:

1. A framework to predict the best query execution plan for an
unforeseen spatio-temporal query

2. A technique to predict query execution times, which enables
long-run and resource-consuming queries to be rescheduled
or not run at all.

The remainder of the paper is organized as follows. Section 2
briefly introduces spatio-temporal SPARQL queries. In section
3, we review related work on currently existing solutions.
Section 4 describes our first approach to modeling and using
learning techniques for our spatio-temporal SPARQL query.
An experimental evaluation of our proposed learning approach
follows in Section 5. A discussion and future work ideas are
also given in this section. Finally, we conclude our work in
the last section.

PRELIMINARIES

IoT data is always associated with spatio-temporal contexts,
thus, the query processing engine for this data needs to sup-
port spatio-temporal computation. The current standard query
language for RDF, i.e, SPARQL 1.1, does not support spatio-
temporal query patterns on semantic data. Recently, there
have been several complementary works that aim to support
spatio-temporal queries on RDF data. In [22], Perry et al.
propose the SPARQL-ST query language, which extends the
SPARQL language to support complex spatial and temporal
queries on temporal RDF graphs containing spatial objects.
Similarly, Koubarakis et al. propose the stSPARQL[15] lan-
guage which can be used to query stRDF, a data model that
is designed for developing ontologies and data instances that
encode spatial and temporal information. In the scope of this
paper, we will consider the spatio-temporal SPARQL query
pattern as following:

SELECT [projection clause]

WHERE [spatial pattern]
[semantic graph pattern]
[temporal pattern]

ORDER BY [ranking function]

LIMIT [top N results]

The SELECT clause includes a set of variables that should
be instantiated from the RDF knowledge base (variables in
SPARQL are denoted by a ? prefix). A graph pattern in the
WHERE clause consists of triple patterns in the form of <s
p o> where any of s, p and o can either be a constant or a
variable. The graph pattern is divided into three parts: (1) The
spatial pattern consists of a spatial function which is defined
by a spatial predicate. The object of the spatial pattern is a set
of input variables used for spatial filtering. It should be noted
that the spatial functions discussed in our work are equally
applicable to all spatial predicates defined in the GeoSPARQL
standard by the Open Geospatial Consortium [5]; (2) The
semantic graph pattern is the basic RDF triple pattern; (3)
The temporal pattern defines temporal filtering through the
temporal predicate and time interval variables.

Next, the ORDER BY clause helps establish the order of
results using a user-defined ranking function. The LIMIT
clause controls the number of results returned. An exemplary
query with a spatio-temporal pattern is:

prefix sosa: <http://www.w3.org/ns/sosa/>
prefix geo: <http://www.opengis.net/ont/geosparql#>
prefix iot: <http://iotschema.org/>
prefix temporal: <http://jena.apache.org/temporal#>
SELECT ?country (?value as ?avg)
WHERE {
?loc geo:winthin(1.675 -47.751 1400 "miles").
?sensor a sosa:Sensor;
sosa:isHostedBy ?loc;
sosa:observes iot:AirTemperature.
?loc geo:geometry ?geo;
geo:parentCountry ?country.
?0bs sosa:madeBySensor ?sensor;
sosa:hasSimpleResult ?value.
?value temporal:average("01/01/2018" "31/03/2018")

}
GROUP BY (?country)
ORDER BY ?value limit 1

Example of spatio-temporal SPARQL query.

This query will detect the coldest European country during
the winter of 2018. The spatial patterns of the query will find
all the weather stations in Europe through a polygonal range
(1.675063 -47.751569 1400 "miles"). The semantic patterns
specify the sensor metadata that includes the observation type
(iot:AirTemperature). Finally, the time constraint is defined in
the temporal patterns with the assumption that the duration of
winter in Europe is from January to the end of March.

BACKGROUND AND RELATED WORK

Semantic spatio-temporal query processing and opti-

mization

To process the aforementioned queries, the works in [11, 22,
15] build their own query parser to translate the given spatio-
temporal query into an abstract syntax tree. The tree then is
mapped to the internal query operators, resulting in a query
plan tree. The physical spatio-temporal operators hence is im-
plemented by either extending the Jena/Sesame frameworks or
using existing spatial-temporal relational databases. However,
these approaches mostly focus on enabling spatio-temporal




query features, but hardly any of them fully address the query
performance and optimization issues that are associated with
querying billions of triples.

As regards dealing with the scalable processing of big spatio-
temporal RDF data, distributed solutions are proposed in [16,
29]. These approaches adopt a loosely coupled hybrid archi-
tecture, which includes different database systems managed by
a central middleware. The middleware works as an integration
query processing engine that breaks an input query into sub-
queries and delegates them to the proper underlying databases.
For example, the spatial filter of the query is executed by a
spatial database while the semantic patterns are processed by
an RDF triple store like Jena, Sesame, etc. The query opti-
mizer will then decide a query execution plan that consists of
an execution order based on the selectivity estimation of each
operator. It is important to note that the execution order has
a significant impact on the overall query performance. The
first execution operator will prune all unnecessary results, and
hence reduce the size of the search space for the next opera-
tor. However, generating an optimized execution order only
based on a selectivity estimation model without taking into
consideration the underlying environment performance - i.e,
the data arrival rate, the characteristics of the network, cluster
configuration - may face a significant risk that the optimization
is critically wrong.

Machine Learning to Predict Query Performance

The recent success of numerous machine-learning-based appli-
cations has prompted the database community to investigate
the possibilities for integrating machine learning techniques
into the design of database systems, especially in query opti-
mizers [1, 19]. This learning technique has become a good
alternative to building complex cost models and is often easier
to adapt and use with new configurations and data patterns.
Moreover, it also enables the prediction of query execution
performance which can benefit many system management de-
cisions, including workload management, query scheduling,
system sizing and capacity planning. Following this direc-
tion, in the relational database area, approaches that exploit
machine learning techniques to build predictive models have
been proposed [2, 9]. These approaches predict the query
execution time and the size of the results by comparing the
similarity of query execution plan features. Instead of just
predicting query performance, the works in [4, 28, 20] use
machine learning to estimate the percentage of work done or
to produce an abstract number that is intended to represent a
relative query optimizer’s cost.

In spite of a sharp growth in the number of such published
works, there are still limited works that use machine learn-
ing for query optimization on the Semantic Web. Hasan [13]
proposed a state-of-the-art approach that uses machine learn-
ing to predict SPARQL query execution times. In this ap-
proach, Hasan firstly computes the similarity of a SPARQL
query based on its algebraic expression and graph pattern, and
then predicts the execution time by applying multiple regres-
sion SVR. The model is evaluated using DBPSB benchmark
queries [21] on an open source triple store (Jena TDB). Fol-
lowing the success of this paper, Zhang et al. [30] present
an improvement on this by replacing the clustering model
with a hybrid feature vector. It is claimed that the training
time is reduced significantly. However, in practice, we ob-

served that applying these approaches for predicting query
performance on spatio-temporal IoT data might give inaccu-
rate results. This is because [oT data not only has semantic but
also has spatio-temporal aspects, while these approaches only
consider the semantic aspect of data in similarity computa-
tions. Our work will address this issue by taking into account
the spatio-temporal dimensions and query cardinalities in sim-
ilarity identification.

A LEARNING APPROACH FOR QUERY EXECUTION
PLANNING

Overview

In this section, we describe our proposed learning approach

for query planning on spatio-temporal IoT data. Our approach
is illustrated in Figure 1.

Training set Feature Extraction

— —
N

Testing set Predictive model

OO @
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New plan generated Execute the Recommend Plan
by the optimizer new query

Model Training and Evaluation

Query execution
time prediction

Figure 1: Overview of our approach

The approach consists of two distinct phases: an offline train-
ing phase and an online testing phase. Before starting the
training phase, we firstly select the historical queries set and
split it into three subsets for training, validation and testing.
These query sets will be executed on the target system from
which the query execution plan and execution time are ob-
served. To execute the query, we build an offline automatic
script that runs separately to the training phase. The script
is used to detect the optimized execution plan for each given
query by considering all the possible plans. The plan which
has the lowest cost will be selected. In the next step, the
Features Extractor module will extract all the selected query
features into the features matrix, which is a necessary input for
machine learning algorithms. The features selection process
will be presented in the following section.

The next component is Model Training and Evaluation, which
is responsible for evaluating the efficiency of different learning
models. For that, this component will train the models with
the training queries set and then evaluate them by using the
validation set. During the training and evaluation processes,
the setting of parameters for each model can be optimized by
using cross-validation procedures, i.e, the number of clusters,
the k value for k-NN regression models, etc. The testing set,
which is not used during model training, can be used for final
testing and model comparison. By evaluating on a testing
set, the learning model with the most accurate prediction will
be selected as a Predictive Model, which will be used in the
testing phase.

The second phase of our approach is online testing that runs
the predictive model with a real-world query. For a given query
Qn, the Predictive Model will propose a suitable execution



SELECT distinct ?sensor ?loc {
?loc geo:within(57.467 -7.367 23.0 "miles' 10000).
?sensor sosa:isHostedBy ?loc.

?loc georlat ?slat.

}
distinct
1
project (?sensor ?loc)

sequence
'

spatial function bgp

——

triple triple
?sensor sosa:isHostedBy ?loc

I e S e e
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Figure 2: Algebra Feature Extractor

function(57.467 -7.367 23.0 'miles’)

?loc geo:lat Pslat.

plan, already generated during the training phase, and reuse it
to execute Q,. For that, the Predictive Model needs to compute
the similarity of Q, with trained queries that were previously
executed by the optimizer. If similarity is detected between
Qp and a trained query Qq , then the execution plan P, used
by the optimizer to execute Q; will be reused to process Qy.
The same methodology is applied for query execution time
prediction.

Query Features Extraction Process

A typical setup for machine learning is to be given a collection
of vectors containing all of the feature values for a given data
set. Therefore, we represent our spatio-temporal query into its
feature vector representation. In this study, we build upon the
work in [13] which uses algebra and graph pattern features to
build the features vector. The difference here is that we extend
the SPARQL algebraic expression vector by adding spatial and
temporal metrics. For the graph pattern, we not only extract
the SPARQL basic graph pattern, but also consider the spatial
and temporal patterns in our graph similarity computation.
In addition, as well as the algebra and graph patterns, we
also include query cardinality features. According to our
experimental results, this extra feature proves its effectiveness
by improving the prediction results significantly.

SPARQL algebra features with a spatio-temporal extension
This step is used to transform the spatio-temporal SPARQL
query strings to algebraic expressions. For an input query, the
query engine will parse the query to an algebraic expression
tree. In this tree, non-leaf nodes are algebraic operators such
as joins, and leaf nodes are the variables present in the triple
patterns of the initial query. Additionally, we add two more
operators that are unique in our engine: the spatial and tem-
poral operators. After parsing a query string to an algebraic
expression, our Feature Extractor component will calculate
the frequencies of all the algebraic operators as query features.
Figure 2 shows an example of extracting the query algebra
features vector from a spatio-temporal SPARQL query.

As shown later in our experiments, the prediction obtained
using a similarity computation based on query algebra features
is quite accurate in recognizing the queries that are almost
identical. However, by carrying out a further analysis into the
incorrectly predicted results, we recognized two significant
risks:

1. The predictive model may judge that two queries are not
similar when analyzing their algebraic expression trees,
even though their execution plans are actually very similar.

2. The predictive model may judge that two queries have a
high similarity measure when comparing their algebraic
expressions, even though their execution plans are different.
This is due to the fact that even small differences in query
graph patterns or differences in the cardinality of each query
operator, which would normally be ignored in the textual
presentation of an algebraic expression, can be very decisive
during the process of defining an execution plan.

To address this problem, we take into account the query graph
pattern similarity, which will be described in the next section.

Spatio-temporal graph patterns features

In respect of query planning, judging two queries as being
similar based on their algebraic expressions can present a
significant risk in terms of incorrect prediction. We realized
when computing query similarities based on algebraic features
that we only considered the frequency of the query operator,
i.e, the number of triples in the basic graph patterns appearing
the queries, but failed to represent the query graph structure.
Recalling that a SPARQL query can also be considered as
an RDF graph, it is therefore obvious that queries that have
some structural similarity might potentially share the same
execution plan and query performance.

To represent the spatio-temporal graph patterns, we propose
building graph pattern features. Specifically, we transform
the similarity problem of two query patterns to the similarity
problem of two graphs. To compute the structural similarity
between two query patterns, we first construct two graphs
from the two query patterns, then compute the graph edit
distance (GED) between these two graphs. The GED between
two graphs is the minimum amount of distortion needed to
transform one graph to another [8]. The process to extract the
graph patterns features can be briefly described as follows:

1. We cluster the structurally similar graph patterns in the
training data into K,,.; clusters. We apply the same cluster-
ing algorithms proposed in [13], which are the K-mediods
clustering algorithm [14] and Risen’s graph distance [26],
to cluster the training queries. However, in addition to
the standard SPARQL graph patterns, we also consider the
spatio-temporal graph patterns when computing the graph
similarity. We built our own graph pattern extractor to not
only extract the semantic graph pattern but also to extract
the spatial and temporal patterns. The spatio-temporal graph
pattern will thus be considered as a standard RDF graph in
which the edges of the graph are spatio-temporal functions
and the nodes of the graph are the input variables for the
functions. We call such a graph a spatio-temporal graph.
Figure 3 illustrates the graph representation of our sample
spatio-temporal query. To ensure that the spatio-temporal
triples are more important than standard triples, we heuristi-
cally improve the weighting function in the GED method by
increasing the cost of edit operations on the spatio-temporal
graph.

2. After having created the set of K4 clusters in Step 1, we

then compute the GED between the graph of each query
q; in the training set and the central graph pattern in each
cluster, and regard each distance as an instance of a feature.
As aresult, we obtain a K),,,4-dimensional feature vector for
qi, where K4 is the number of clusters.
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Figure 3: Mapping spatio-temporal query patterns to graphs

Query cardinality features

We build query cardinality features by selecting the cardinality
of each dimension of the input query. We observe that there
are some queries that share structurally similar basic graph
patterns and the same algebraic expressions, but neither the
query execution plan nor the query execution time are similar.
This is because the cardinalities (spatial cardinality, temporal
cardinality, semantic cardinality) are not considered in the
similarity computation for both the algebra and graph pattern
features. Note that the cardinalities will help the optimizer to
decide the execution order of each operator. For example, if the
spatial cardinality of the query is small, the query plan should
process the spatial operator first, pruning unnecessary results,
followed by the semantic part of the query. For simplicity,
we assume that the temporal operator always has the highest
cardinality due to the massive amount of historical IoT data
that can be available. Hence, we limit our study to selecting the
spatial and semantic cardinalities in order to create a Query
Cardinality features vector. We retrieve spatial cardinality
quickly by performing the bounding box query defined in the
spatial operator. We then reuse the work in [27] to estimate
the semantic cardinality. A brief description of these features
is given in Table 1.

Feature Description

Sp_ARD | The estimated result size of spatial operators

Se_ARD | The estimated result size of semantic patterns
Table 1: Description of the Query Cardinality Features

EXPERIMENTS

Experimental Setup

Setup and software

The backend system for our query engine [24] is running on
a physical cluster of four servers. We train the model on a
separate server that has the following configuration: 2x E5-
2609 V2 Intel Quad-Core 2.5GHz 10MB Cache, Hard Drive
3x 2TB 7200RPM, Memory 32GB1600MHz DDR3.

We experimented with Jena v2.13.1 to extract the algebra
features and have used Weka v3.8.2 [12] to implement the
machine learning algorithms. The GED was calculated using
the Graph Matching Toolkit [25].

Dataset

We use a weather dataset, which is a subset of our Graph of
Things (GoT) dataset [17] for training and testing our learn-
ing model. To generate the queries set, we collect the GoT
query logs that have been gathered since 2016 and classify
them into 13 different query templates based on their charac-
teristics (query operators, temporal range, observed properties,

etc.). The query templates analysis summary is described in
Table 2. Each template consists of placeholders that can be
replaced by specific terms. The temporal, semantic and spatial
metrics indicate the computational complexity of the query
template. From these templates, the training, validation and
test queries will then be generated. To generate queries, we
randomly assign selected RDF terms from the GoT dataset
to the placeholders in the query templates. We generate over
2244 queries that are divided equally between all templates.
We take about 40% of the queries for training purposes, about
27% for validation and about 33% for testing. This process
results in 900 training queries, 600 validation queries and 744
testing queries.

Templat 12 [3[4[5]6 789 10]1l]1z2]13

Number of

placeholder 3059 5 7 8 6

Rumberof s 13 J6 |5 |1 (39|04l |u|li2|n

riple

Temporal X[ X | x| x| V]|V |V |Xx|Xx|Xx |V ]|/ |V

Semantic |V |V |/ |/ | K |/ |/ |/ |/ | X |/ |7 |/

Spatial X [ X[ X | X [ XK [ X | X [/ |/ [/ |7V
Table 2: Query templates analysis

Predictive models

In this paper, we evaluate three machine learning algorithms
available in the Weka library. Each algorithm is considered
as the most representative machine learning algorithm in its
category. We firstly run our experiment with the Support Vec-
tor Machine for regression (SVR) [10]. The SVR creates a
maximum-margin hyperplane to split the input features to a
higher dimensional space and then performs a regression in
that space via a linear regression function. We performed
the SVR test with two commonly used kernels: the RBF and
Polynomial kernels. The second algorithm is the k-Nearest
Neighbors (k-NN) [3]. Conceptually, k-NN is a lazy learning
algorithm that predicts based on the closet training data point.
For our experiment, we apply two variations of k-NN by con-
sidering different distance functions: Euclidean distance and
Manhattan distance. The last learning model in our experiment
is Random Forest [18], which is a typical representation of a
Decision Trees Regression model. Random Forest is an im-
provement upon bagged decision trees that disrupts the greedy
splitting algorithm during tree creation so that split points can
only be selected from a random subset of the input attributes.

Evaluation Metrics

Our work applies classification and regression models to query

plans and query execution times, respectively. Therefore, we

use a classification metric, called accuracy, to evaluate the

prediction of query execution plans. For query execution

time, we use root mean square error and the coefficient of

determination as our prediction metrics. Details of each of

these metrics are described as follows:

e Accuracy: The accuracy metric measures the ratio of correct
predictions to the total number of instances evaluated. The
prediction accuracy is defined as:

‘l n R
Accuracy = . Y 15i=x) H
i=1

where ¥; is the predicted value and yj is the corresponding
actual value, with n being the total number of observations.

e Root Mean Square Error (RMSE): RMSE is used to measure
the differences between values predicted by a model and



the actual values. The RMSE is defined as:
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e Coefficient of Determination (R?): The R? value provides
a measure of how well future samples are likely to be pre-
dicted by the model. The R? value is always between 0 and
1. An R? score close to 1 indicates near perfect prediction.
R? is defined as:
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i =)
, where ¥ is the mean of the actual value  (3)
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Experimental Results

Experiment 1: Train a model with algebraic features

In this experiment, we evaluate the performance of different
learning algorithms, namely SVR-RBF and SRV-Polynomial
(SVR-Pol), k-NN with Euclidean distance (KNN-Eu), k-NN
with Manhattan distance (KNN-Mah), and Random Forest
(RF). We firstly compare the prediction accuracy of these
algorithms for the query execution plan and then present the
results of their performance for query execution time. For
the k-NN algorithms, we selected the k value, the number of
neighbors, using cross validation. We found that k=2 gives us
the best results.

Table 3 reports the execution plan prediction accuracy. We
observe that the accuracy values of these algorithms are just
slightly different, rounding to 80%. The highest value is
realized by the RF algorithm, followed by SVR-Pol and KNN-
Eu.

SVR-RBF | SVR-Pol | KNN-Eu | KNN-Mah RF

Accuracy | 79.704% | 80.108% | 79.973% 79.963% 80.127%

Table 3: Query plan prediction accuracy using Algebra fea-
tures

In the following, we look at the query execution time pre-
diction results. The regression performances of the learning
algorithms are evaluated by RMSE and R?, as shown in Table
4. One interesting fact we noticed is that, in contrast to the
execution plan prediction, the SVR algorithms (SVR-Pol and
SVR-RBF) have poor performance. The minimal values of R?
(0.01 and 0.113) are given by the SVR algorithms while the
k-NNs and RF perform in almost the same way with values
equal to 0.976 and 0.975, respectively. The R> values indicate
that the k-NN and RF algorithms predict more accurately than
the SVR algorithms. Additionally, the RMSE values also im-
ply bad performance of the SVR algorithms with high values
of 366.359 and 357.288 for SVR-RBF and SVR-Pol. To plot a
comparison of the predicted and actual execution time values,
we select the algorithms that have the best performance in
each group, which are SVR-Pol, KNN-Eu and RF. The plots
are shown in Figure 4. We use a log-scale to accommodate
the wide range of query execution times. As illustrated in
these figures, there are still a substantial number of outliers,
which indicate incorrect prediction results. According to our
observations, these incorrect predictions fall into the category
of queries which share the same algebraic expression but have
different query plans and execution times.

KNN-Eu | KNN-Mah

SVR-RBF | SVR-Pol | " ) (k=2) RF
RMSE | 366359 | 357.288 | 54.809 | 154245 | 54.927
R 0.01 0.113 0.976 0976 | 0975

Table 4: R” and RMSE values using Algebra features

Experiment 2: Train a model with algebraic features and

spatio-temporal graph patterns

In the second experiment, we again use only three algorithms
which are derived from the previous experiment, namely SVR
with Polynomial kernel, k-NN with Euclidean distance and
Random Forest. Using the cross-validation procedure, we
are able to select and set the number of clusters for the k-
mediods clustering algorithm at K,,.; = 25, and the number of
neighbors for k-NN at k=2. We chose these values because
they give us the lowest RMSE and highest R values. Table
5 presents the query plan prediction accuracy. By adding
the spatio-temporal graph pattern features in our similarity
computation, we achieve the highest accuracy value of 87.68%
with the RF algorithm. Following this is the KNN-Eu one with
86.42%. The SVR-Pol has increased slightly at 80.64%.

Figure 5 and Table 6 portray the prediction results for query
execution time. As shown in Figure 5, the prediction results
of KNN-Eu and RF move closer to a perfect prediction. The
highest R? value is 0.979 (KNN-Eu). Analyzing the results, we
realized that by adding the graph patterns features, the number
of inaccurate predictions for two queries that have structurally
similar spatio-temporal graph patterns but different algebraic
expressions is reduced significantly. This achievement is also
explained by the decrease in RMSE values as described in
Table 6. The most considerable decrease in RMSE belongs
to KNN-Eu, which is 54.809. The RMSE of the SVR-Pol
algorithm also substantially reduces, which is now 129.23.
These are the main improvements from the first experiment
with the algebraic features model.

SVR-Pol | KNN-Eu (k=2) RF
Accuracy | 80.645% 86.425% 87.688%
Table 5: Query plan prediction accuracy using Algebra and
Graph patterns features

SVR-Pol | KNN-Eu (k=2) RF
RMSE | 129.231 54.809 54.927
R? 0.970 0.979 0.976

Table 6: R and RMSE values using Algebra and Graph pat-
terns features

Experiment 3: Train a model with algebraic features, spatio-

temporal graph patterns and query cardinality features

So far, we have described the experimental results for predict-
ing query execution plans and query execution times using
algebra and graph patterns as feature vectors. We also ran
the experiment by adding query cardinality features. As men-
tioned in Section 4, this additional feature vector helps to
improve the predictive accuracy of spatio-temporal queries
that are similar in terms of algebraic expression and graph pat-
tern representation, but that differ in query performance. Not
surprisingly, the prediction results of this experiment are more
accurate compared to Experiment 2. This is evidenced by the
increased prediction accuracy values shown in Table 7, and
the fewer outliers with respect to the perfect prediction line in
Figure 6. Specifically, in Table 7, KNN and RF continually
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Figure 5: Regression-predicted vs. actual execution times using Algebra and Graph patterns features

show their efficiency with the highest achieved accuracies of
95.054% and 95.860% with regard to query execution plan
prediction. For the query execution time prediction results, as
described in Table 8, we get an overall best R? value of 0.990
(using RF) and an overall lowest RMSE value of 35.746 (us-
ing RF). These results indicate that our model can accurately
predict the query plan and execution time for a given query.

SVR-Pol | KNN-Eu (k=2) RF
Accuracy | 93.414% 95.054% 95.860%
Table 7: Query plan prediction accuracy using Algebra, Graph
patterns and Query cardinality

SVR-Pol | KNN-Eu (k=2) RF
RMSE | 61.062 39.273 35.746
R? 0.972 0.987 0.990

Table 8: R? and RMSE values using Algebra, Graph patterns
and Query cardinality

Discussion and future work

Our extensive experimental results demonstrate the efficiency
of our learning approach for query planning on spatio-temporal
IoT data. The most significant improvement in our approach
is achieved by the inclusion of spatio-temporal information
in the query similarity computation. Also, together with the
algebraic expression and spatio-temporal graph patterns, we
propose a new feature vector, namely query cardinality, to
enhance the prediction accuracy in the case of queries that
share similar algebraic expressions and graph patterns, but that
have different query performance. The experimental results
indicate that our approach can accurately predict over 95% of
input queries.

For future work, we want to address some of the drawbacks
that exist in our study. One major limitation of our approach
is its poor adaptability to dynamic streaming IoT data. We
are investigating techniques to improve the learning model so
as to be amenable to continuous retraining in the context of
streaming queries. Another drawback is that temporal cardi-
nality is not adjusted in our learning model. This is due to our
implicit assumption that this cardinality always has the largest
value compared to the other cardinalities. We have a work-in-
progress to efficiently estimate the temporal cardinality, and
hence, this issue will be resolved in the near future.

CONCLUSION

In this paper, we present our recent efforts to accurately pre-
dict both a query execution plan and the query execution time
using similarity identification techniques on spatio-temporal
SPARQL queries. Our goal was to build a machine learning
model that recognizes the similarity of queries, and only using
the information that is available before the queries are to be
executed. Compared to existing works, the major contribution
of our approach is the use of machine learning to improve
similarity detection by not only taking into account semantic
aspects but also spatio-temporal correlations. Whilst our ap-
proach still has its limitations, it is a step towards providing an
alternative solution that aims to address the query optimization
challenge for the spatio-temporal management of IoT data.
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