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Abstract. Recommending tweets that a user might retweet plays an
important role either in satisfying users’ information needs or in the dis-
semination of information in microblogging services such as Twitter. In
this paper, we propose a deep neural network for tweet recommendations
with author-based Long Short-Term Memory networks for learning the
latent representations/embeddings of tweets. Our approach predicts the
preference score of a tweet based on (1) the similarity between the embed-
dings of a user and the tweet, (2) the similarity between the embeddings
of the user and the author (who posted the tweet). Despite its simplicity,
we present that our approach can significantly outperform state-of-the-
art methods with or without explicit features for recommending tweets
in terms of five evaluation metrics.

1 Introduction

Twitter1 users are often overwhelmed by the large number of tweets from their
followees, and this makes it difficult for users to consume information relevant to
their interests. Recommending tweets that a user might be interested in (or might
be retweeted by the user) plays an important role in dealing with the informa-
tion overload. Deep learning techniques such as Convolutional Neural Networks
(CNNs) [7] for processing data in the form of multiple arrays, or Recurrent Neural
Networks (RNNs) for tasks with sequential inputs, have been widely adopted in
various research domains such as computer vision, natural language processing,
etc. Motivated by the state-of-the-art performance achieved by deep learning
approaches in different research problems, researchers have started leveraging
deep neural networks for several tasks in online social networks such as retweet
prediction [13] or hashtag recommendations on Twitter [8]. However, leveraging
Long Short-Term Memory neural networks (LSTMs) [3] for tweet recommen-
dations is still relatively unexplored. Also, to the best of our knowledge, none
of previous studies have incorporated the author information when learning the
latent representation of a tweet. In particular, we combine the author and the

1 https://twitter.com/.
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content of a tweet to learn the tweet embedding with LSTMs instead of rely-
ing only on the content. That is, for two tweets with the same texts but from
different authors, our approach learns different latent representations for those
tweets while previous approaches do not. The intuition behind this idea is that
tweets such as “our paper got accepted at @ICWE2018” should have different
latent representations based on who tweeted them. While leveraging deep learn-
ing approaches is able to learn a good latent representation of a given tweet,
it still lacks contextual information which can be provided by explicit features
(e.g., the popularity of the author of a tweet). This information might play an
important role in tweet recommendations, which we will show in Sect. 4.2. Our
contributions in this paper are as follows: (1) We propose a deep neural
network for tweet recommendations, which leverages author-based LSTMs for
learning tweet embeddings (Sect. 3); (2) We evaluate our approach by comparing
it with deep learning approaches (Sect. 4.1) and with other approaches in the
context of leveraging explicit features (Sect. 4.2).

2 Related Work

A popular line of approaches for tweet recommendations is using feature-aware
factorization approaches [1,2,4]. For example, Collaborative Tweet Ranking
(CTR) [1] is a factorization model, which predicts the preference score of a tweet
based on explicit features and the relationships between the latent represen-
tations with respect to users, authors, and words in the tweet. The difference
between our approach and those factorization models is that they treat tweets as
bags of word embeddings, and therefore, the sequence of words is not preserved.
Another line of work has focused on learning useful features for predicting the
retweetability of a tweet [12,13] such as the large scale study conducted by [12].
More recently, [13] proposed several CNN-based models for retweet prediction,
and showed that a CNN-based approach with user and author embeddings out-
performs a full model with an additional attention-based neural network [6] in
terms of precision, and outperforms other baselines. However, tweet embeddings
have been learned based on their content only without considering their author
information. Also, a comparison with previous studies leveraging explicit fea-
tures was not conducted, and the contribution of explicit features in the context
of using deep learning techniques is unclear.

3 Proposed Approach

The basic idea of our approach is to compute the similarity between a target
user u and a given tweet t, and the similarity between u and the author of t,
and predict the preference score of t based on those similarities. Our approach is
one of the Deep Semantic Similarity Model-based recommendation approaches
(DSSMs), which has shown to be extremely suitable for top-N recommendation
tasks [14]. In short, DSSMs project different entities into a common latent space
for computing their similarities with similarity measures such as cosine similarity.
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3.1 Author-Based Long Short-Term Memory Networks for Tweets

With the ability to learn long-term memory dependencies, LSTMs have been
widely used in many natural language processing problems such as machine
translation. In this work, we use author-based LSTMs to learn the latent rep-
resentations for tweets. To this end, we first represent a tweet as a sequence of
words where stopwords and URLs are removed. Next, we convert these words
to a matrix in order to use it as an input to LSTMs: mt = [x1, · · · , xm], where
i -th column of mt denotes the embedding of a word xi in a tweet.

LSTMs. Similar to other RNNs, LSTM also has the form of a chain of repeating
components in a neural network called the memory cell. The key to an LSTM
is a cell state in the memory cell which works as a conveyor belt, and controls
the information flow with some minor linear interactions through the entire
chain. The LSTM can remove or add information to the cell state via gates,
which consists of a sigmoid layer and a pointwise multiplication operation. The
output value of a sigmoid layer ranges from 0 to 1, which represents how much
information should be let through. There are three steps in each LSTM. The
first step is going through a forget gate layer which decides what information to
keep from the cell state by looking at ht−1 and xt, as shown below:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

where [ht−1, xt] denotes the concatenated vector of ht−1 and xt, σ is a sigmoid
function: σ(x) = 1

1+e−x , and bf denotes a bias term. Wf is a weight vector to be
learned for the forget gate layer.

Next, LSTM decides what new information to store in the cell state, which
consists of two parts. The first part is an input gate layer :

it = σ(Wi · [ht−1, xt] + bi) (2)

The second part is a tanh layer (Eq. 3), which creates a vector of new candidate
values, C̃t, that could be added into the cell state.

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Finally, the new cell state Ct will be created based on linear interactions of the
previous cell state Ct−1, ft, it, and C̃t as follows.

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

The last step is filtering the cell state to generate the final output, which can
be formulated as below:

ot = σ(Wo · [ht−1, xt] + bo),
ht = ot ∗ tanh(Ct)

(5)

Here, ot decides what parts of the cell state to keep for the final output, and the
cell state goes through a tanh layer before multiplying by ot.
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Incorporating author information. The output of LSTMs based on the content of
a tweet is the latent representation/embedding of a tweet. However, considering
the content of a tweet only for LSTMs will produce the same latent representa-
tions for the tweets with the same content, even if these tweets are posted by
different authors. Our assumption is that the representation of a tweet should
reflect the content of the tweet as well as the author. This means that tweets
with the same content should have different representations if the authors of
these tweets are different. To this end, we incorporate the author information to
learn tweet embeddings using LSTMs. That is, we use the author embedding va
with respect to a tweet t as an initial input to LSTMs instead of the first word
in t to learn the embedding for t, and therefore, a tweet matrix is changed to
mt = [va, x1, · · · , xm]. The final output of author-based LSTMs is used as the
final representation of t, which is denoted as vt.

Given the latent representation of a tweet (vt) learned from the author-
based LSTMs, we then measure the similarities between user, the tweet, and the
author of it. Let vu denote the embedding of a target user u. The final concate-
nation layer vconcat consists of two similarity scores sua and sut. sua denotes the
cosine similarity between vu and va: sut = vu·va

‖vu‖2‖va‖2
, and sut denotes the cosine

similarity between vu and vt. Finally, the preference score of t is measured as
score = W · vT

concat + b, where W denotes the weights for each element in the
concatenation layer, and b denotes a bias term.

Regularization. We use the dropout [11] for regularization, which refers to drop-
ping out units in a neural network, is one of the widely used regularization tech-
niques for preventing overfitting in training neural networks. Individual nodes
are either “disabled” with probability 1 − p or kept with probability p. The
“thinned” outputs of a hidden layer are then used as an input to the next layer.
We also constrain l2-norms of the weight vectors to a threshold ε as follows,
‖w‖2 = ε, if ‖w‖2 > ε, which normalizes a word vector w so that its l2-norm is
equal to ε, and will be performed whenever the l2-norm of w is bigger than ε.

Training. We use a pairwise approach, Bayesian Personalized Ranking (BPR)
[10], for formulating the loss function, which has been widely used for ranking
problems. The intuition behind BPR is that the preference score of a retweeted
tweet should be higher than that of a tweet which has not been retweeted. The
loss function can be defined as below:

�(x1, x2) =
∑

x1∈X+

∑

x2∈X−
− log[σ(ŷ(x1) − ŷ(x2))]

where σ is a sigmoid function, ŷ(·) denotes the prediction score obtained by
our proposed approach, and X+ and X − are the sets of positive and negative
training instances, respectively. The objective of training is to learn parameters
that minimize the loss. To learn the parameters for minimizing the loss, we use
a Stochastic Gradient Descent (SGD) with the Adam update rule [5] to train
the model until the loss has converged.
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4 Evaluation

We use a Twitter dataset from [9] for our experiment. This dataset consists of
480 random users and their tweets. In order to obtain explicit features for our
experiment (Sect. 4.2), we used the Twitter API2 to crawl additional information
about users and authors such as the count of followees/followers. We removed
the users that did not exist on Twitter at the time of crawling. For each user, we
first sorted the tweet stream of their followees in chronological order. For each
user, the latest 25% of followees’ tweets were considered as the test set, and the
rest of their tweets were used as the training set. The users that have less than
one retweet in the training or test set were removed. In addition, we limited five
previous and five subsequent tweets of a retweeted tweet to construct the final
training and test sets. This results in ten negative instances for each retweeted
tweet. Finally, the dataset consists of 307 users with 71,039 retweets, 710,390
training instances in the training set, and 18,544 retweets in the test set.

Evaluation Metrics. To evaluate the performance of tweet recommendations, we
use five widely used evaluation metrics: MAP (Mean Average Precision), MRR
(Mean Reciprocal Rank), P@N (Precision at the top-N recommendations), R@N
(Recall), and nDCG@N (Normalized Discounted Cumulative Gain) where N = 1,
5, 10, respectively. We use the bootstrapped paired t-test for testing the signifi-
cance where the significance level α = 0.05.

4.1 Experiment 1

In the first experiment, we aim to (1) compare our approach against a CNN-
based approach proposed recently, and (2) investigate whether incorporating the
author information for learning the latent representations of tweets with LSTMs
improves the recommendation performance.

– UA-CNN [13]: This method uses CNNs for learning the latent representa-
tion of a tweet, and concatenate the tweet representation with user and
author embeddings for predicting the preference score of the tweet. We re-
implemented a BPR formulation of this approach for our experiment as the
original model proposed in [13] is for the retweet prediction task with a point-
wise loss function which is not optimal for tweet recommendations.

– UA-LSTM/A: This baseline denotes UA-LSTM without incorporating the author
embedding when learning the latent representation of a tweet. Therefore, it
does not distinguish the same tweets from different authors.

Parameter Settings. The dropout rate p is set to 0.5, the l2-norm threshold is set
to 3, and the mini-batch size is set to 40. As some improvements might be due to
the difference of embedding sizes for compared models, we set the dimensionality
of all embeddings to 300 in the same way as [13].

2 https://developer.twitter.com/.

https://developer.twitter.com/
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Results. Figure 1 shows the recommendation performance based on UA-LSTM and
other methods compared. As we can see from the figure, UA-LSTM significantly
outperform both UA-CNN as well as UA-LSTM/A. Overall, both approaches using
LSTMs outperform UA-CNN, which indicates the efficiency of LSTMs for tweet
recommendations. The improvement of UA-LSTM over UA-LSTM/A in terms of all
evaluation metrics clearly indicates that incorporating author information for
learning the latent representation of a tweet improves the performance.
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Fig. 1. Recommendation performance based on UA-LSTM and two other deep learning
approaches.

4.2 Experiment 2

In the second experiment, we are interested in our approach compared to other
approaches relying on explicit features. Instead of “reinventing the wheel”, we
use a comprehensive set of features used in the literature [1,4] as our focus
here is understanding the contribution of explicit features with respect to tweet
recommendations in the context of deep neural networks rather than proposing
new features. The detailed descriptions of features can be found in [1,4]. In
short, these features aim to capture three factors: information about (1) the user
themselves, (2) the tweet author, (3) the tweet content, and the relationships
between these factors. The compared baselines for this experiment are as below:

– RTCount: This is a baseline method ranks tweets based on their retweet count.
– RankSVM: RankSVM is a widely used learning-to-rank model with explicit fea-

tures, which transforms the ranking problem into a classification problem.
– CTR [1]: This is a state-of-the-art feature-aware factorization model for pre-

dicting the preference score of a candidate tweet. We re-implemented this
method with the same parameter settings as in [1].

– UA-CNN-F. This method adds the explicit features into the concatenation layer
of UA-CNN for final prediction.

– UA-LSTM-F. This is our proposed approach with those explicit features (fe)
in the concatenation layer, i.e., vconcat = [sua, sut, fe].

Results. Table 1 shows the tweet recommendation results based on different
approaches with explicit features. Overall, our UA-LSTM-F which incorporates
explicit features provides the best performance while the straightforward baseline
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Table 1. The recommendation performance of our proposed approach and other meth-
ods with explicit features.

RTCount RankSVM CTR UA-CNN-F UA-LSTM-F UA-CNN UA-LSTM

MAP 0.2513 0.4390 0.4306 0.4331 0.4778 0.3623 0.4097

MRR 0.3822 0.6549 0.6568 0.7115 0.7290 0.6585 0.7238

nDCG@1 0.2280 0.4756 0.4658 0.5570 0.5733 0.5016 0.5928

nDCG@5 0.3230 0.5764 0.5511 0.6196 0.6412 0.5552 0.6206

nDCG@10 0.4401 0.7312 0.7289 0.7644 0.7823 0.7152 0.7577

P@1 0.2280 0.4756 0.4658 0.5570 0.5733 0.5016 0.5928

P@5 0.1941 0.4534 0.4098 0.4808 0.4984 0.4059 0.4664

P@10 0.1674 0.4104 0.3879 0.4228 0.4453 0.3635 0.4088

R@1 0.0485 0.0798 0.0928 0.0920 0.0958 0.0822 0.0921

R@5 0.1550 0.2547 0.2468 0.2461 0.2744 0.2091 0.2250

R@10 0.2420 0.3621 0.3537 0.3570 0.3695 0.3106 0.3188

method RTCount achieves the worst performance. Both UA-CNN-F and UA-LSTM-F
outperform pure deep learning approaches without explicit features, i.e., UA-CNN
and UA-LSTM. This indicates that although the recommendation performance
achieved with deep learning approaches is promising, explicit features still play
an important role in boosting the performance. One of the possible explanations
might be that using deep learning approaches based on retweets only cannot
capture other contextual information which can be complemented by explicit
features, e.g., the popularity of authors based on features such as # of follow-
ers/followees. We also observe that UA-LSTM provides comparable results (i.e.,
no statistical difference) to UA-LSTM-F in terms of some evaluation metrics such
as MRR, nDCG@1, P@1, and R@1. This suggests that UA-LSTM performs well
on ranking the first relevant tweet higher, and on top-1 recommendation.

Compared to UA-CNN-F, our proposed approach consistently outperforms this
baseline method. A significant improvement of UA-LSTM-F over UA-CNN-F in
MAP (+10%), P@10 (+5%), and R@5 (+11.5%) can be noticed. Regarding
recall, CTR provides the best performance in terms of R@1, and RankSVM provides
the best performance in terms of R@5 and R@10 among the baseline methods.
UA-LSTM-F performs consistently better than CTR and RankSVM in terms of recall.
Furthermore, UA-LSTM-F outperforms CTR significantly in terms of R@5 and
R@10, and outperforms RankSVM significantly in terms of R@5. Despite of its
simplicity, the results indicate the efficiency of our proposed approach compared
to other approaches with explicit features.

5 Conclusions

In this paper, we presented a novel deep neural network architecture for tweet
recommendations. The approach employs author-based LSTMs for learning
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tweet embeddings, and predicts the preference scores of tweets based on the simi-
larity between user and author embeddings as well as the similarity between user
and tweet embeddings. Results show that our proposed approach can outper-
form other deep learning based baselines as well as the approaches with explicit
features. In addition, the overall improvements of UA-LSTM-F and UA-CNN-F over
UA-LSTM and UA-CNN indicate that explicit features still play an important role
in the context of tweet recommendations.
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