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Abstract. In this paper we propose an unsupervised lexicon-based approach 

to detect the sentiment polarity of user comments in YouTube. Polarity 

detection in social media content is challenging not only because of the 

existing limitations in current sentiment dictionaries but also due to the 

informal linguistic styles used by users. Present dictionaries fail to capture the 

sentiments of community-created terms. To address the challenge we adopted 

a data-driven approach and prepared a social media specific list of terms and 

phrases expressing user sentiments and opinions. Experimental evaluation 

shows the combinatorial approach has greater potential. Finally, we discuss 

many research challenges involving social media sentiment analysis. 

1. Introduction 

The rapidly-increasing popularity of social media sites such as Facebook
1
, Flickr and 

YouTube is primarily due to the ease of use and simplicity of these systems for the 

creation, collaboration and sharing of resources (images, video) even from non-technical 

users. For video sharing, YouTube is the most popular site on the Web. According to a 

recent [1] study, YouTube
2
 accounts for 20% of Web traffic and 10% of total Internet 

traffic. YouTube provides many social mechanisms to judge user opinion and views about 

a video by means of voting, rating, favourites, sharing and negative comments, etc. This 

context information is useful in studying user and community behaviour and perspective. 

Analysis of user comments provides a useful data source for many applications such as 

comment filtering, personal recommendation, and user profiling to name a few.  In this 

paper, we opted for an unsupervised lexicon-based feature interpretation to analyze the 

sentiment orientation of user comments and we used the publicly-available sentiment 

lexicon called SentiWordnet [2]. But the question remains whether the available lexicons 

are sufficient for a dynamic domain where language changes and evolves so fast. Can the 

existing lexicons capture these dynamics? How can we detect the sentiment polarity of 

colloquial phrases? We propose to extend existing resources with a social media specific 
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phrase list frequently used by users. Usage of the list is further validated using the 

community-created dictionary urbandictionary.com
3
. 

The application of comment analysis will enable the video creator to view constructive 

comments and filter out spam comments. This is much more useful in the domain of news 

items where there are thousands of user comments generated for each news item every 

day, and also has relevance for product reviews and educational videos. Our study focused 

on the top 4,000 videos across five major categories provided by YouTube classifications. 

The rest of the paper is organized as follows. Section 2 describes related work in the field 

of sentiment analysis. Section 3 describes the data corpus and its statistics. Our approach 

for sentiment analysis is described in section 4. This is followed by a discussion of the 

results in section 5. Finally we conclude our paper with some future directions. 

2. Related Work 

We will describe some studies related to sentiment analysis and social media user studies. 

Early work in this area includes Turney [17] and Pang [18] who applied different methods 

for detecting the polarity of product reviews and movie reviews respectively. It is less 

clear how sentiment analysis techniques can be employed in the context of social website 

analysis where the language tends to be more freeform and informal. Blitzer et al. [6] 

extended a learning model for sentiment classification on a product review data set in 

cross-domain settings. Researchers in [3] reported high accuracy in English movie 

reviews and 72%-83% accuracy in non-English reviews. Tan et al. [8] present a domain-

specific classifier to label the top k unlabeled instances and to learn a new model for a 

new domain. 

Existing research based on SentiWordnet has focused on identifying opinionated 

words. The linguistic rule-based approach of Chaumartin [7] uses SentiWordNet in 

combination with WordNet Affect to detect emotion and valence values for words in 

headlines. His approach uses the frequency of sentiment-bearing words and types of 

WordNet relations instead of polarity scores. Fahrni and Klenner [9] focus on the target-

specific polarity determination of adjectives. A prior-polarity lexicon of adjectives is 

derived from SentiWordNet. Devitt and Ahmad [10] have exploited this resource in 

combination with WordNet’s semantic content for sentiment polarity detection in 

financial news. Zhang et al. [11] extract subjective adjectives from SentiWordNet in order 

to estimate the probability that a document contains opinion-bearing expressions. 

Bermingham et al. [12] studied online radicalisation among YouTube users by analysing 

user comments and their language usage. 

In [13] the dependency of helpfulness of product reviews from Amazon users on the 

overall star rating of the product is examined and a possible explanation model is 

provided. “Helpfulness” in that context is defined by Amazon’s notion of how many users 
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rated a review and how many of them found it helpful. In [14] the temporal development 

of product ratings and their helpfulness and dependencies on factors such as the number 

of reviews or the effort required (writing a review vs. just assigning a rating) are studied. 

Works on sentiment classification and opinion mining such as [15] deal with the problem 

of automatically assigning opinion values (e.g. “positive” vs. “negative” vs. “neutral”) to 

documents or topics using various text-oriented and linguistic features. Recent work [5] in 

this area also makes use of SentiWordNet  to improve classification performance. 

However not many studies in sentiment analysis and opinion mining has focused on the 

noisy data such as user comments in social media sites such as Youtube. 

3. Data Corpus 

We created a data corpus consisting of information from around 20,000 videos. We used 

the YouTube API to collect the most popular and most relevant videos across five major 

categories including 10 different sub-categories such as politics and news, science and 

technology, travel, music, movie, sports, gaming, people and blogs. For each category we 

collected the 2,000 most popular videos. 

For each video we collected up to 50 comments if available along with the usernames, 

text of the comment, etc. The complete collection includes data about 19,743 videos and 

more than 500,000 associated comments both short and long.  

Fig. 1 describes the comment distribution over various categories. Music commands the 

highest average comments followed by news, movie, people and travel. 

 

Figure 1. Comment distribution over categories. 

3.1 Content Pre-Processing 

The textual content of comments gives us a glimpse of a user’s view on the video content. 

Therefore the choice of words helps in detecting the valence of the content. For efficient 
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processing and gathering of language statistics, we indexed all our data with Lucene
4
  The 

top 20 words from positively-classified comments included many positive adjectives 

(cool, awesome, amazing, great, nice, etc.); informal acronyms indicating a happy state 

(e.g. lol); and positive exclamations (e.g. wow). The top 20 words from negatively 

classified comments included negation terms (don’t, never); negative adjectives (sad, 

fake, scary, hate etc.) and various profanities or insulting terms. These top terms were 

extracted from the comments in terms of their frequency. After collecting the video data 

and the corresponding comments we carried out some basic pre-processing of the text 

content. Comments were subjected to stop-word removal, and term stemming. We used 

Porter stemming to stem the terms and then used SentiWordnet for sentiment polarity 

detection. SentiWordnet is a publicly-available thesaurus annotated with the sentiment 

polarity of each synset from WordNet 2.0 [4]. 

4. Our Approach 

We adopted a combination of lexicon-based approaches as background knowledge to 

detect the comment sentiments. Below we will describe the primary sentiment lexicon 

SentiWordnet and the manually-created social media specific phrase list. 

4.1 SentiWordnet (SWN) 

For analysing user sentiment as reflected in comments, we used SentiWordnet, a 

sentiment annotated lexicon built on top of WordNet. WordNet is a lexical dictionary 

describing terms and their semantic relationships (hypernyms, meronyms, hyponyms, 

etc.). Each term is represented as a synset in WordNet and each synset contains synonym 

terms. Each term in the synset is described with a triple of positive, negative and 

neutral/objective sentiment scores. For instance, the term “worst” carries the triple of 

{pos. = .25, neg. = .75, neutral = 0}. The triple score sums up to 1. SWN consists of 

around 207,000 word-sense pairs or 117,660 synsets. It provides entries for nouns (71%), 

verbs (12%), adjectives (14%) and adverbs (3%). 

4.2 Negation and Social Media Aware Phrase List (SMAPL) 

Negation detection in a sentence is crucial for identifying the term sentiment. Terms do 

not communicate the meaning in isolation but much more if identified in a window of 

context. The word “good” generally carries a positive sentiment, but when it appears in a 

phrase with the qualifiers “not so good”, this will change the polarity of the phrase  from 

positive to negative. It is imperative to identify such contextual situations for proper 

sentiment detection. We have created a list of negation expressions by observing 

comments and used the list to scan each sentence for their presence. In case an expression 

is found we reverse the term polarity given in the SentiWordnet dictionary. When 
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considering negation expressions, words such as “no”, “never”, ”none”, “not”, “hardly”, 

“seldom” are all considered. Social  media interactions such as comments do not confirm 

strictly to the conventional linguistic style as observed in blogs, news, and even product 

reviews. These interactions are informal, full of acronyms, slang words and are constantly 

changing. Any cross-domain model will result in poor performance if adapted without 

proper training. For this reason, we created an informal terms list normally used to 

express opinion and feelings in social media and social networking sites. 

Table 1. A subset of SMAPL, 

douchebag hardly painful not good 

nope me gusta lmfao 

omg damnit rulez 

freakin scumbag Damn good 

In order to incorporate social media specific terms and phrases, we prepared a list from 

our dataset. To prepare the domain-specific list which we called the “Social Media Aware 

Phrase List” we used two different sources: (1) our existing data and 2) flagged 

comments. For the existing comments, we followed these steps: 

1. Indexed the comment dataset in a Lucene index 

2. Extracted the high frequency terms 

3. Filtered the terms not available in SentiWordnet as possible candidates 

We also selected the flagged comment with the assumption that these comments must 

have sentiments with high intensity as they were given “thumbs down” as a mark of 

unacceptability by other users. An analysis of flagged comments revealed that there are 

four major categories of comments that are normally flagged: (1) self promotion: where 

people ask others to subscribe to or watch their video; (2) propaganda: contains messages 

expressing strong beliefs on topics like religion, socialism, and conspiracies; (3) abusive 

comments: contain extremely sexist and racist comments; and (4) other: these cannot be 

classified under the above three categories because the content looks absolutely normal, 

however perhaps due to opposing views or some other dislike of the commenter, they 

mark the message as “flagged”. These flagged comments can be used to build comment 

classifiers for rating and filtering purposes. 

Our assumption proved correct when we noticed that flagged comments carried relatively 

strong and abusive words compared to the non-flagged comments. 

4.3 Sentiment Analysis and Polarity Detection 

Sentiment analysis is the task of identifying positive and negative opinions, emotions, and 

evaluations [17]. Our study evaluates the user comment sentiment by using SentiWordnet 



and our customised social media specific phrase list. 
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I think it would benefit religious people to see 

things like this, not just to learn about our 
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and our customised social media specific phrase list. Fig. 2 shows an abstract view of the 

Figure 2. System architecture. 

The system starts with a pre-processed user comment as input and detects the number of 

that exist in the comment. For each word in the list, we calculate 

the sentiment score by retrieving the number of entries and the triple for each entry. In 

case of a single entry, the decision will be in favour of the class (positive, negative or 

highest score. In case of multiple entries of a term, such as different 

entries (senses from Wordnet), we averaged the scores of each class over each entry in 

order to achieve some normalisation. 

The above step will give us a triple of three scores for a term. To determine the sentiment 

f the entire comment, we aggregate the score of all terms in the comment and the 

frequency of each class is counted (the decision will again be in favour of the high

or the highest average of the three classes). Below is an example of a use

comment and the sentiment scores of terms. 

Table 2. First pass of a user comment. 

Sentiment polarity score (pos., neg., neutral)

I think it would benefit religious people to see 

things like this, not just to learn about our 

in a fun and easy way, but 

also to understand that non-religious 

explanations don't leave people hopeless and 

helpless as they think: they inspire people with 

awe, understanding and a thirst for exploration. 

benefit: 0.0: 0.125: 0.875 

fun: 0.0: 0.0: 1.0 

easy: 0.0: 0.625: 0.375 

understand: 0.375: 0.125: 0.5 

leave: 0.0: 0.0: 1.0 

hopeless: 0.0: 0.75: 0.25 

helpless: 0.0: 0.875: 0.125 

inspire: 0.0: 0.125: 0.875 

awe: 0.5: 0.125: 0.375 

understanding: 0.0: 0.0: 1.0 

thirst: 0.25: 0.0: 0.75 
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4.4 Negation Detection 

The sentiment score is refined with negation detection in the sentence. After the first pass 

of term polarity detection, the comment is passed through the negation detection stage. 

The negation phrase lexicon consists of a list of high-frequency terms that have more 

probability of appearing in a negative context. Once the input is identified as carrying 

such phrases, the previously determined sentiment score is reversed from positive to 

negative or vice versa. 

4.5 Social Media Aware Phrase Detection (SMAPD) 

This phase consists of scanning the comments for any terms or adjectives typically 

observed in social media interactions but that have no entry in the SentiWordnet set. This 

list could be improved further and used as a comment classification feature. But for now, 

we only scan the text with a window of four terms for the presence and absence of the 

term or phrase in the list. If detected, we give a fixed polarity value of 0, 1 or -1. 

5. Result of Sentiment Analysis 

For evaluation, we extracted 100 comments from each category randomly and manually 

annotated with positive and negative sentiments as the ground truth. Evaluation was 

conducted both with SentiWordnet alone and in combination with the extended list. 

Table 3. Results of sentiment analysis with SentiWordnet. 

 Science & Technology Entertainment Sports News & Politics 

 GT Detected GT Detected GT Detected GT Detected 

Positive 40 30 (75%) 45 26 (57%) 35 23 (65%) 23 16 (69%) 

Negative 35 12 (35%) 39 11 (28%) 39 17 (43%) 54 17 (31%) 

Table 3 above shows our positive and negative detection against the ground truth across 

all the categories. The result shows that most of them are misclassified as objective or 

neutral. The positives are comparatively better detected than the negatives. Table 4 below 

shows the detection performance once we add the list expressing the negation expressions 

and social media specific negative and positive terms. The trend is similar but the 

improvement in negative sentiment detection is better than the positive sentiments. This 

confirms our assumption that the present approach does well but needs more training in 

social media scenarios. 

 

 



Table 4. Results of sentiment analysis including the second phase. 

 Science & Technology Entertainment Sports News & Politics 

Positive GT Detected GT Detected GT Detected GT Detected 

40 34 (85%) 45 32 (71%) 35 29 (82%) 23 17 (73%) 

Negative 35 21 (60%) 39 23 (58%) 39 27 (69%) 54 28 (51%) 

 

5.1 Discussion 

The results in Fig. 3 show that negative detection (right) performed better than the 

positive (left) detection in the second stage. This confirms our hypothesis that an 

extension to the existing lexicons is crucial for an improved performance. It is useful to 

remember that the comments used for extracting phrases were not part of the evaluation 

data. 

  

  

Figure 3. Positive (left) and negative (right) sentiment detection using both methods. 

Compared to many other studies for product and movie reviews, the accuracy score is low 

for the social media comment use case. So far, no study has reported on their evaluation’s 

performance using YouTube comments, and therefore we consider there is a need to carry 

out more training and to explore the specific characteristics related to these types of 

comments. 

The application of SentiWordnet alone is not giving satisfactory results when compared to 

the state-of-art achieved in other content domains. Even in combination with the extra 

negation detection and SMAPD phase, the results show room for improvement. 

We will now describe some of the limitations in sentiment analysis for informal 

comments as found on YouTube and the associated research challenges, and some of the 

main reasons for not achieving the expected results. 
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1. SentiWordnet and other lexicons are primarily suitable for news, blogs, product 

reviews and movie reviews where people follow certain linguistic syntaxes more 

when compared to many social media sites (especially YouTube), where the language 

is more informal and consists of many adopted slangs. Therefore, we suspect that 

cross domain applications need more careful feature selection and training. 

2. The lack of context disambiguation is another known limitation of SentiWordnet; 

however some contextual information could be derived from YouTube videos to 

assist with disambiguation of terms. 

3. In YouTube comment threads, there may be some benefit in analysing and taking into 

account the temporal impact of a series of comments (i.e. the impact of negative and 

positive comments on subsequent comments and actions). 

4. For the degree of sentiment, a simple positive or negative will not be sufficient, but 

the intensity of the sentiment will help guide subsequent impact. 

 

6. Conclusions and Future Work 

In this work, we proposed a lexicon-based unsupervised sentiment detection of user 

comments for YouTube videos. Since the existing sentiment lexicons are not geared 

towards social media conversations and interaction patterns, we extended a social media 

specific lexicon expressing sentiments and opinions of the user. We showed that the 

combined use of the existing dictionary SentiWordnet and the extended list performs 

better in detecting the user sentiments from the comments. The result also showed that 

recall of negative sentiment is poorer compared to the positives, which may be due to the 

wide linguistic variation used in expressing frustration and dissatisfaction. Further studies 

need to be performed to validate the result.  We described future work towards improving 

the social lexicon and statistically validating it so that it can be used across other domains. 
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