
Simple Algorithms for Representing Tag Frequencies in the SCOT
Exporter

Hak-Lae Kim
Digital Enterprise Research Institute

National University of Ireland, Galway
IDA Business Park, Lower Dangan

Galway, Ireland
haklae.kim@deri.org

Sung-Kwon Yang
Biomedical Knowledge Engineering Lab

Seoul National University
28-22 Yeonkun-Dong, Chongno-Ku

Seoul, Korea
sungkwon.yang@gmail.com

John G. Breslin
Digital Enterprise Research Institute

National University of Ireland, Galway
IDA Business Park, Lower Dangan

Galway, Ireland
john.breslin@deri.org

Hong-Gee Kim
Biomedical Knowledge Engineering Lab

Seoul National University
28-22 Yeonkun-Dong, Chongno-Ku

Seoul, Korea
hgkim@snu.ac.kr

Abstract

In this paper we describe the SCOT Exporter and its
algorithms to create instance data based on the SCOT
(Social Semantic Cloud of Tags) ontology for sharing
and reusing tag data. The algorithms use tag frequen-
cies and co-occurrence relations to represent statisti-
cal information via the SCOT ontology. We give an
overview of the Exporter and the algorithms, and then
discuss some experimental results.

1. Introduction

Social tagging systems encourage user participation
through easy-to-use free tagging tools and produce ag-
gregations of user metadata through bottom-up con-
sensus. However, these systems on the Web are not suf-
ficient to provide uniform way to define the semantics
of the tag and to calculate its frequencies. In fact, folk-
sonomies, statistically-weighted list of tags, have faced
a number of important linguistic issues (i.e. polysemy,
synonymy, homonymy, plurals, and spelling variants,
etc.) and statistical issues (i.e. frequency, weighted
value, etc.). In comparison with the linguistic issues,
the statistical issues have not been focused on at the
moment. However, when we intend to integrate or ex-
change tag data across various applications, different
folksonomies, or different users, it is a critical problem

because we do not know which type of frequency for-
mat (i.e. absolute and relative frequency etc) to use.
To solve the limitations, we need a semantically and
statistically enriched model to be able to describe tag-
ging information.

The SCOT (Social Semantic Cloud Of Tags)1 on-
tology is an ontology for sharing and reusing tag data
and representing social relations among individuals. It
provides the structure and semantics for describing re-
sources, tags, users and extended tag information such
as tag frequency, tag co-occurrence frequency, and tag
equivalence.

In this paper, we describe the SCOT Exporter and
the algorithms for constructing data based on the
SCOT ontology. In particular, the contributions of this
paper are:

• SCOT Exporters that can automatically construct
SCOT instances from various data sources such as
weblogs, relational databases, etc. The algorithms
for the Exporters support an efficient way to gen-
erate the necessary information for SCOT.

• The experimental evaluation demonstrates that
the SCOT Exporter is scalable and generates
SCOT instances with good run time performance.

The rest of the paper is organized as follows: Section
2 describes the SCOT Exporters and its algorithms for

1http://scot-project.org



constructing tags and their co-occurrences. Section 3
describes the experimental setting and results. Section
4 discusses related work and Section 5 concludes the
paper.

2. SCOT Exporter

We describe how data using the SCOT ontology can
be automatically generated from both client-side we-
blog engines and databases. Two types of exporters
for creating the SCOT ontology are as follows:

• Exporter for the WordPress2. This allows
the production of SCOT ontology from a blog.
Its design is based on the assumption that cat-
egories in WordPress are used as tags. This
plugin is activated in the plugin menu on the
WordPress administration panel and it requires
no user configuration in order to work. The on-
tology created by the plugin can be found at
http://yourhost/scot/scot.rdf.

• Exporter for database . This aims to create the
SCOT ontology data from a large number of RSS
feeds in a DBMS. This type of data set consists
of multiple users from various blog systems, so it
creates the ontology data per each individual user.

Both types of the exporters have almost the same func-
tionalities that basically create user profiles such as
name, blog name, blog url etc. and extended tag in-
formation such as name, frequency, co-occurrence, hi-
erarchy between tags, equivalence of tags etc.

2.1. Tag Frequency Computation Algo-
rithm

A tag has a weighted frequency that is associated
with or assigned to certain items. The frequency of an
individual tag would reflect how popular it is.

Frequencies can be expressed as absolute frequencies
or relative frequencies [4]. The absolute frequencies
are raw observations, that have not been normalized
with respect to the base rates of the event in question.
When we speak about the frequency of tags it usually
means the absolute frequency format. At the same
time, the ’relative frequency’ means a frequency that
is expressed in relation to a sample size or rate. This
format is used to compare the occurrence of objects
in two or more groups. Accordingly, this format is
used in tag clouds where the size of each tag represents
the proportion of the tags. Simply stated, an absolute

2http://scot-project.org/?page_id=12

frequency, the actual number of frequency, tells us how
a frequently tag is used in a give domain while a relative
frequency of each tag means its proportion in the total
tag occurrence.

In SCOT, this information is represented by the
scot:ownAFrequency and scot:ownRFrequency prop-
erties which are subproperties of scot:AFrequency
and scot:RFrequency respectively3. We use the Tag
Frequency Computation (see Algorithm 1) to calculate
the frequency of each tag.

Algorithm 1 Tag Frequency Computation

Require: tagList is a list of tags
var tagList ← empty list
var totalTagFrequency ← 0

for all item ∈ getUserItemList(user) do
for all tag ∈ getItemTagList(item) do

if tagList.exist(tag) then
tag.AFrequency ← tag.AFrequency + 1

else
tagList.add(tag)

end if
totalTagFrequency ← totalTagFrequency + 1

end for
end for
for all tag ∈ tagList do

tag.RFrequency ← tag.AFrequency / totalTagFre-
quency

end for

Several functions are assumed: getUserItem-
List(user) returns the item lists for the user from the
data source. getItemTagList(item) gets the tag lists for
the given item. tagList.exist(tag) returns true if the tag
exists in the tagList. tagList.add(tag) inserts the tag
into the tagList.

2.2. Co-occurrence Frequency Computation
Algorithm

People are inclined to generate one more tags
when they tag in resources. The meaning of the
tag becomes more specific when the tag is combined
with a set of tags. To simply define the term co-
occurrence: if an item contains both the tags se-
manticweb and blog, these two tags are said to
co-occur or have a first order co-occurrence. It
can play an important role to reduce ’tag ambigu-
ity ’ in tagging systems. scot:cooccurAFrequency

3The former is intended to describe the absolute format and
the purpose of the latter is to represent the relative format



and scot:cooccurRFrequency properties describe co-
occurrence as an absolute and relative value to the
frequency amongst a set of tags. Co-occurrence
frequencies will be computed by the Co-occurrence
Frequency Computation, as shown in Algorithm 2.
Note that getUserItemList(user) returns the item

Algorithm 2 Co-occurrence Frequency Computation

Require: cooccurList is a list of co-occurrences
var cooccurList ← empty list
var totalCooccurFrequency ← 0
for all item ∈ getUserItemList(user) do

itemTagList ← getItemTagList(item)
if itemTagList.count ≥ 2 then

cooccur ← cooccurList.exist(itemTagList)
if cooccur 6= null then

cooccur.AFrequency ← cooccur.AFrequency +
1

else
cooccur ← newCooccur(itemTagList)
cooccurList.add(cooccur)

end if
totalCooccurFrequency ← totalCooccurFre-
quency + 1

end if
end for
for all cooccur ∈ cooccurList do

cooccur.RFrequency ← cooccur.AFrequency / to-
talCooccurFrequency

end for

list for the user from the data source. getItem-
TagList(item) gets the tag list for the given item. cooc-
curList.exist(itemTagList) returns the tag set if there
exists a same cooccurring tag set in the cooccurList.
cooccurList.add(cooccur) inserts the co-occurring tag
set into the cooccurList.

3. Evaluation

3.1. Datasets

Planet Journals is a blog aggregator website that
collects country-specific blogs for residents or cit-
izens of a particular country. The Ireland site
(planet.journals.ie) has a collection of around 1322
blogs, 119101 posts, and 13688 tags. The data set used
here is taken from that website during the two years
period between February 2005 and October 2006, and
the software that powers the website (Planet PHP) also
allows the aggregation of any tags that are used in the
various blogs and that are passed through via RSS syn-

dication feeds (e.g. using the dc:subject attribute for
an RSS item).

3.2. Evaluation Results

All the tests were run on an Intel T2600 2.16 GHz
machine with 2 GB of RAM. The mean number of posts
per blog for the data set is 96.6 and the mean number
of tags per blog is 29.4. The mean number of frequency
of tag usage per blog is 97.4, therefore more than 30%
of the tags are overlapping (i.e. 29.4/97.4). Table 1
shows the top five tags. We can see that several tags
are associated with the country Ireland (i.e. irishblogs
and ireland etc).

Tag Ranking AF RF
irishblogs 2557 3.7%
general 1828 2.7%
ireland 1821 2.7%

uncategorized 976 1.4%
music 714 1.0%

. . .

. . .∑
68785 100%

Table 1. Top five tags

The co-occurring tags4 in Table 2 are created by cal-
culating tags which appeared together using Algorithm
2. We can see that the tags such as irishblogs, ireland,
blogs, and irish in Table 1 are frequently used with
others. This means that frequently used tags are likely
to combine with other tags. In SCOT, only the first
order co-occurrence that happened in real world usage
without a conditional probability is described. It is not
the main of the SCOT to describe a similarity among
tags or other types of term relationships as this ontol-
ogy is intended to reflect the fact that tags happened
in a given domain.

The run time performance is a critical issue when
creating and maintaining a SCOT data set, due to the
complex analysis of word relations and the frequent
updates. To generate the SCOT data, we must carry
out analyzes such as tag frequencies and co-occurrence
relations among tags using the Algorithms 1-2 in or-
der. Figure 1 shows the runtime performance for the
given data. The number of tags+cooccurrences on the
Y axis is found from the sum of ’total frequency of tags’
and ’total frequency of tag sets’. The time required de-
pends on the amount of tags: the mean time for it is
1.1 seconds. Most cases in the data (under 200 tags)

4gaeilge is the Irish word for gaelic and podchraoladh is pod-
casting.



Cooccurrences AF RF
gaeilge irishblogs podchraoladh 71 0.8%
cork flickr ireland photography 36 0.4%

blogs irishblogs 35 0.4%
ireland real news 32 0.4%

irishphotos photography 31 0.4%
. . .
. . .∑

11514 100%

Table 2. Top five co-occurring tags

are generated in less than 1 second. Although there
are several large tags in the data, it takes less than
6 seconds to generate the corresponding SCOTs. We
believe that the algorithms and the tool produces an
efficient performance in terms of time.

Figure 1. Runtime performance

4. Related Work

There are several efforts that try to represent the
concept of tagging, the operation of tagging, and the
tags themselves. Newman [1] describes the relation-
ship between an agent, an arbitrary resource, and one
or more tags. In his ontology, there are three core con-
cepts such as Taggers, Tagging, and Tags to represent
tagging activity. Gruber [2] describes the core idea of
tagging that consists of object, tag, tagger, and source.
Knerr [3] describes the concept of tagging in the Tag-
ging Ontology. Since his approach is based on the ideas
from [1, 2], the core element of the ontology is Tagging.
The ontology consists of time, user, domain, visibility,
tag, resource, and type. There are some other projects
[5, 6] related to tag sharing and semantic tagging.

The approaches in the related work are focused on
the tagging activities or events that people use to tag

resources using keyword. Therefore the core concepts
of the ontologies are Tagging, Tagger and Resource
to represent users, events, and resources respectively.
However, there is no way to describe frequency of tags
in the ontologies. The SCOT ontology can be easily
represent this information using properties of tag fre-
quency.

5 Conclusion

The SCOT Exporter provides an efficient run time
performance to construct SCOT instances. The algo-
rithms for the exporter are simple and provide the com-
plete set of information to describe metadata using the
SCOT ontology. The exporters are implemented for
each site or application since there are many possible
kinds of social tagging sites for which exporters can be
developed. Our approach is a starting point to rep-
resent the structure and the semantics of social tag-
ging. We will provide further information through the
project web site (http://scot-project.org).

Acknowledgments

This material is based upon works supported by
the Science Foundation Ireland under Grant No.
SFI/02/CE1/I131.

References

[1] R. Newman, Tag Ontology design, available
at: http://www.holygoat.co.uk/projects/tags/
(viewed 16/08/2007), 2005.

[2] T. Gruber, Ontology of Folksonomy: A Mash-up
of Apples and Oranges, First on-Line conference
on Metadata and Semantics Research (MTSR’05).
http://www.metadata-semantics.org/.

[3] Knerr, T. (2006),Tagging Ontology- Towards a
Common Ontology for Folksonomies, available at:
http://code.google.com/p/tagont/

[4] Clare Harries, N. H., Are absolute frequencies,
relative frequencies, or both effective in reducing
cognitive biases?, Journal of Behavioral Decision
Making 13, Issue 4, 431-444, 2000.

[5] Tagcommons project website:
http://tagcommons.org

[6] Tagora Project website: http://www.tagora-
project.eu


