
PODCAST PINPOINTER: A MULTIMEDIA SEMANTIC WEB
APPLICATION

Aidan Hogan, Andreas Harth, John G. Breslin

Digital Enterprise Research Institute, National University of Ireland Galway,
Galway, Ireland

firstname.lastname@deri.org

Keywords: Semantic Web, Podcast, Multimedia.

Abstract

In late 2004, a new method of publishing multimedia
broadcasts on the Internet became popular called
‘Podcasting’. Podcasting incorporates existing feed
description formats, namely RSS 2.0 (Really Simple
Syndication), to deliver various enclosed files which allows
users to subscribe to feeds, receiving updates periodically.
Originally intended for self-publishing and syndication of
audio files, usage of Podcasting for video files has become
quite popular. Indeed, thousands of Podcast feeds are now
available, reaching a wide range of listeners and viewers. The
rapid development of such a technology proves the demand
for structured formats of describing multimedia data,
facilitating location and retrieval of desirable media for
consumers. This paper proposes a specification to allow
Podcast feeds be integrated into the Semantic Web
framework. We are thus able to combine data from Podcast
feeds with instance data from other sources and also able to
reuse existing Semantic Web technologies such as
repositories and user interface applications.

1 Introduction

As bandwidth increases and new internet-friendly compressed
multimedia formats become popular, demand for, and
consequently supply of multimedia files on the Web has
experienced a surge in volume. However, such a proliferation
of multimedia data corresponds in difficulties with regards
data retrieval. The information overload problem is not
specific to the multimedia domain however, and is a more
general symptom of the expansion of the Web. Many
researchers are focusing their efforts on solving said data
retrieval problem, one such venture being in the area of the
Semantic Web [1].

Podcasts have illustrated the demand for structured formats to
describe multimedia by having experienced a phenomenal
escalation in popularity (through radio station Podcasts or
through individuals "audio blogging" and "video blogging" /
"vlogging"). As is, Podcasts are described in RSS 2.0 format
files, with supplementary specifications cropping up to allow
multimedia-specific descriptions to be stipulated.
Unfortunately, however, the RSS 2.0 format of feed

description does not exploit the capabilities of RDF (Resource
Description Framework) and is not a participant of the
Semantic Web venture.

RDF, as a W3C recommendation, is a framework for
providing the Web with structured data. There is a
considerable amount of research being pursued in developing
the technology and applications pertaining to RDF and the
Semantic Web. Currently, many applications exist to handle
and analyse such data and ultimately provide services of
utility to users, and to bring order to a rather chaotic World
Wide Web [2,3].

RSS 1.01 is a format for creating feeds based on RDF/XML.
As such, it is within the realm of the Semantic Web.
This paper illustrates work with the following contributions

• We propose a Podcast vocabulary in RDF Schema
and provide a method to convert RSS 2.0 Podcast
feeds to RDF.

• We present a prototype that gathers or harvests RSS
2.0 Podcast feeds, uses the said conversion and then
applies existing SW tools to create an application to
search and browse Podcast descriptions which we
entitle “Podcast Pinpointer”.

2 Podcasting Revolution

Podcasting is very much a booming technology2. From
humble beginnings, it has become a prevalent force in
multimedia syndication and distribution.

Its origins lay in the introduction by Dave Winer, responding
to demand from users, of an enclosure element in his
company’s RSS format, allowing the introduction of audio
and video syndication through the model. Such an idea
inspired a natural progression towards the contemporary
Podcast feed format with strong grass roots support by
blogging enthusiasts.

Part of its strength lies in its relative simplicity, allowing
casual users to create and publish online radio shows and get
them to a wide audience. All a user needs to create a Podcast
is some simple recording equipment, a basic understanding of

1 http://purl.org/rss/1.0/
2 http://www.tdgresearch.com/press044.htm

RSS and some web space. It is also convenient for consumers,
who can use traditional feed-catching methods to subscribe to
a Podcast feed and receive automatic intermittent updates.

However, it is not only casual users that are publishing
Podcasts, as larger organisations have begun to see the
positive aspects of such technologies. Many companies are
publishing media via Podcasts, ranging from the BBC and
ABC News to NASA and Disney. Indeed, there has been
much interest shown by many American radio stations, who
have begun making Podcasts of their programmes available
online (e.g. NPR's Science Friday).

Other companies have taken an interest in promoting the
technology. Apple has become heavily involved in the area of
Podcasting. Being implicitly involved from the start
(Podcasting being a portmanteau involving a reference to
their portable MP3 player, iPod, and broadcasting), they took
an active role in June ‘05. Some of their products such as
iPod and iTunes were already Podcast friendly, featuring
music file synchronisation features exploited by Podcasting
origins. They began providing Podcatching software, which
allows users to browse and subscribe to feeds, and also a
Podcast directory, a categorised listing of broadcasts. They
upgraded the firmware on iPods to display Podcasts in the
top-level music menu. They also built a specification for
describing aspects of Podcasts which would appear in a
predefined format on iTunes and iPod displays3. This itunes
namespace4 is intended for use within an RSS 2.0
environment.

Besides this specification, Yahoo! have also created a
namespace for syndicating media items5. This specification is
intended as a replacement for the RSS enclosure element,
offering a more expressive means of describing media items.

3 Podcast Specification in RDFS

In the following we describe the classes and properties that
participate in our specification. We do not create a whole new
vocabulary, but invent new terms where appropriate and use
properties and classes from existing vocabularies such as RSS
1.06, DC7 (Dublin Core) and FOAF8 (Friend of a Friend).
Such terms are explained here as they form an integral part of
the format. Not all valid terms are listed here, for instance
many properties of the FOAF specification which would be
legitimate within the foaf:Person class are omitted for
brevity. The new terms use the new local prefix pod and the
complete list as it currently exists is defined in the proceeding
subsections. In addition a specification9 with accompanying
RDF Schema10 currently reside on the Web.

3 http://phobos.apple.com/static/podcast_specifications.pdf
4 http://www.itunes.com/DTDs/Podcast-1.0.dtd
5 http://search.yahoo.com/mrss
6 http://purl.org/rss/1.0/
7 http://purl.org/dc/elements/1.1/
8 http://xmlns.com/foaf/0.1/
9 http://sw.deri.org/2005/07/podcast/
10 http://sw.deri.org/2005/07/podcast/spec.rdfs

3.1 Classes

In keeping with the typical RSS 1.0 specification, we preserve
the use of the rss:channel elements and introduce a
subclass of the rss:item element.

foaf:Person denotes a person and is in the domain of
pod:credit in this application.

rss:channel is an overview of the feed itself, providing a
virtual table of contents for the show items and also the
generic author, date, topic etc. of the proceeding items.

rdf:Seq is a class which acts as a container for
pod:Podcast item listings within the rss:channel.

pod:Category is an allowance for input data demands
and is a class used in conjunction with DC properties to
denote a category description and the taxonomy it refers to.

pod:File represents a physical multimedia file and has
many optional properties described later.

pod:Podcast is a container for a single Podcast show,
which is described using properties described later including
title, creator etc. pod:Podcast is a subclass of rss:item.
Where it contains multiple pod:File entries of the same
content, the rdf:about attribute should refer to the default
file.

3.2 Properties

dc:creator can be a property of an rss:channel or a
pod:podcast which provides the name of the creator of
said class or classes.

dc:title is a property of the pod:category element
which offers the word or phrase to denote its topic.

dc:subject is a property of a channel or item which it
links to a pod:category element.

foaf:mbox provides the email of the person to whom the
parent foaf:Person instance refers.

foaf:name is the name of the person to whom the parent
foaf:Person instance refers.

rdf:about provides the subject for all the properties of the
class it describes and usually refers to the URL of the
resource.

rdf:li is a property of the rdf:Seq denoting individual
items.

rss:description is a brief summary of the content of
the rss:channel or pod:Podcast.

rss:items is a property relating the rss:channel class
to the rdf:Seq class of item listings.

rss:title describes the title of the parent
rss:channel or pod:Podcast

pod:bitrate is an optional attribute of pod:File
which provides the file’s kilobits per second ratio.

pod:credit contains a foaf:Person class used to
describe a person with involvement in the Podcast.

pod:domain is an optional attribute of the
pod:Category class. It provides a URL to a taxonomy or
classification to which the title of the category refers.

pod:duration provides the length in seconds of the file.

pod:explicit is a property of either rss:channel or
pod:podcast. If the content of the class is unsuitable for
minors, the property’s value will be true.

pod:expression is an attribute of pod:File and
states whether the file is a sample excerpt, a full edition or a
continuous stream

pod:fileSize is an attribute of pod:File and indicates
the size of the media file in bytes.

pod:framerate provides the frames per second ratio of a
video file.

pod:hasMedia is a property of pod:Podcast referring
to a single or multiple pod:File elements contained within
a pod:Podcast instance. In the case of multiple instances,
each pod:File within the property must have the same
content. Such usage is intended for files which are either
identical bar physical formats or where some of the files are
abridged or excerpts of the default file.

pod:isDefault is useful where multiple pod:File
instances occur within the one pod:hasMedia property and
thus have identical or abridged content. This value is true
when the parent pod:File instance is the default file format
of the pod:Podcast item.

pod:length represents the length of the file in pixels if
visual content is present.

pod:role is a property used to describe the role of the
person, to whom the parent foaf:Person instance refers,
in the Podcast’s creation.

pod:type refers to the MIME type of the file.

pod:width represents the width of the file in pixels if
visual content is present.

3.3 Example Usage

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pod="http://sw.deri.org/2005/07/podcast#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://example.com/podcasts/index.html">
 <title>New Specification</title>
 <description>An example Podcast feed describing this new
specification.</description>
 <pod:credit>
 <foaf:Person>
 <foaf:name>Aidan Hogan</foaf:name>
 <foaf:mbox rdf:resource="mailto:aidan.hogan@deri.org"/>
 <pod:role>Owner</pod:role>
 </foaf:Person>
 </pod:credit>
 <dc:subject>
 <pod:category>
 <pod:domain rdf:resource="http://example.com/Taxonomy" />
 <dc:title>Semantic Web</dc:title>
 </pod:category>
 </dc:subject>
 <items>
 <rdf:Seq>
 <rdf:li rdf:resource="http://example.com/podcasts/newShow1.mp3" />
 <rdf:li rdf:resource="http://example.com/podcasts/newShow2.mp3" />
 </rdf:Seq>
 </items>
</channel>

<pod:Podcast rdf:about="http://example.com/podcasts/newShow1.mp3">
 <dc:creator>Andreas Harth</dc:creator>
 <title>Item #1</title>
 <pod:explicit>true</pod:explicit>
 <description>This week Andreas talks all about the new RDF Podcast
Specification</description>
 <pod:hasMedia>
 <pod:File rdf:about="http://example.com/podcasts/newShow1.mp3"
 pod:fileSize="16490812"
 pod:type="audio/mpeg"
 pod:expression="full"
 pod:isDefault="true"
 />
 <pod:File rdf:about="http://example.com/podcasts/newShow1.ra"
 pod:fileSize="482342"
 pod:type="audio/x-realaudio"
 pod:expression="sample"
 pod:isDefault="false"
 />
 </pod:hasMedia>
</pod:Podcast>

<pod:Podcast rdf:about="http://example.com/podcasts/newShow2.mp3">
 <dc:creator>John Breslin</dc:creator>
 <title>Item #2</title>
 <description>This week John gives his two cents on the new RSS 1.0
Podcast Specification</description>
 <pod:hasMedia>
 <pod:File rdf:about="http://example.com/podcasts/newShow2.mp3"
 pod:fileSize="8727310"
 pod:type="audio/x-mpeg"
 pod:bitrate="128"
 pod:duration="1058"
 />
 </pod:hasMedia>
</pod:Podcast>
</rdf:RDF>

Figure 1: An example usage of the new specification

Fig. 1 illustrates an example Podcast feed using the already
described properties and classes. As can be seen, the RSS 1.0
format is still evident in the structure of the document, with
channel acting as a source of information and table of
contents for all the items following it. The items in this format
are of type pod:Podcast, a subclass of the traditional
rss:item element.

3.4 Data Conversion

To introduce Podcasts to the Semantic Web, the thousands of
feeds residing on the Web would have to be converted to the
RDF specification. Whilst RSS 2.0 can quite neatly convert
over to RSS 1.0 (both having comparable elements) with the
exception of a few features, the current non-RDF
vocabularies associated with Podcasting are incompatible
with a simple transformation.

To implement such a conversion, we commissioned a
stylesheet to map the original element structures from the
RSS 2.0 template model which is commonly interspersed
with elements from Yahoo!, Apple and other specifications.
Many difficulties arose in the conversion operation.
With several designs for publishing Podcast metadata, there
existed much duplication between the various methods. For
instance, both Yahoo! and Apple introduce a <category>
element, <author> element, <description>,
<keywords> etc. Not only are such elements and others
present twice within these documents but many equivalent
elements already existed in Dublin Core (<author> =
<dc:creator>, <description =
<dc:description>) and RSS 1.0 schemas
(<description> , <title>) etc.

Also both Yahoo! and Apple use conflicting methods of
describing multimedia files within their “RSS 2.0 format”
models. Whilst Apple advocate the use of an existing RSS 2.0
element, namely the <enclosure> tag, Yahoo! have
created a new class called <media:content> with
different applicable properties.

Another challenge raised was by the continuous updating of
the Yahoo! model which has been widely adopted for use.
The original publication of the specification has been
radically updated twice without versioning data appearing in
the namespace rendering instance data of multiple versions
unwieldy.

Whilst the above obstacles lead to difficulties in developing
software agents to interpret current Podcast feeds it
furthermore gives rise to human error. The complexity and
duplication present in the model constructs traps which users
new to RSS and feed creation are vulnerable to. Such users
attempting to use the various specifications are prone to
creating feeds with invalid XML or RSS. For instance one
common error encountered in user created Podcasts was to
syndicate multiple shows within the one RSS item element.

In order to make our specification interoperable and
practically usable in our intended application (searching and

browsing any Podcast feed), we designed an XSLT document
to resolve the differences present in the various XML RSS 2.0
Podcast feeds into a uniform RDF representation. The
stylesheet consists of almost 1000 lines of code, which shows
that XML-based solutions have shortcomings in terms of
integrating data from different sources. After applying the
XSLT to the native XML Podcast feeds, we end up with
RDF/XML which is subject to further processing using
existing tools.

4 Multimedia Search Engine and Browser

In pursuance of the idea of being able to use existing SW
tools on top of the converted data, we present a system of
browsing and searching Podcast instance data. This system
incorporates pre-existing components. We entitle it “Podcast
Pinpointer”.

4.1 Architecture

Fig. 2 illustrates the architecture of the system. The crawler
component is responsible for locating and fetching Podcast
feeds on the Web. The data integration component essentially
applies the XSLT stylesheet to transform the various XML-
based formats to RDF, which then can be stored in YARS, an
RDF repository [4]. The user interacts with the system via a
User Interface, where they can perform searches and browse
the dataset. We elaborate on the structure and purpose of the
various components in the subsequent subsections.

Figure 2: The architecture of the current Podcast Pinpointer
application.

4.2 Locating & Crawling Multimedia on the Web

In order to create a central repository of multimedia data, we
have to locate and crawl such data. However, Podcasts are not
interlinked, and so achieving a complete set of data is
demanding. The most complete method of data acquisition

would be a crawl of the entire Web, however the resources
necessary to complete said task are quite substantial.
To attain an initial set of links to Podcasts feeds we visited
various public Podcast Directories (e.g. iPodder) and
achieved a combined list of about 6,000 Podcast pages, which
was numerically greater than the amount claimed to be
referenced by any of the main Podcast Directories.

Once we screen-scraped an initial set of URL's from Podcast
directories, they were crawled and cached. Podcast feeds
should not be neglected for more than a few hours however,
as new shows are continually being added and local versions
of the data would become obsolete. Currently, the crawler is
run intermittently. As underlined in the future work section,
plans exist to extend the crawler capabilities to allow for
continuous crawling and user submission of feeds.

We completed a crawl of 6054 Podcast feeds towards the end
of August 2005. The overall size of the crawled data was 120
MB. The dataset is available online11

4.3 Data Conversion and Integration

We applied the XSLT stylesheet previously outlined in
Section 3.4 to the native Podcast feeds. The output of the
transformation was RDF/XML in the Podcast vocabulary
described in Section 3.

4.4 Storage

Podcast Pinpointer uses YARS to store and retrieve
Podcast/RDF instance data. This provides a central repository
for data which can then be queried. YARS offers optimized
index structures. YARS uses Notation312 as a format for
encoding facts and queries. Agents pose queries via an HTTP
interface. YARS features advanced querying features, in line
with the structured dataset it stores. It also features keyword
search capabilities.

4.5 User Interface

Presently, a user interface exists to query and browse the
integrated dataset. The user interface interacts with the
Storage component via HTTP. A user can pose either single
keyword queries or queries for matching literal. The storage
component returns the results in RDF/NTRIPLES (Notation
3) format, which are then parsed, sorted, and serialized to
RDF/XML. Finally, an XSLT generates the HTML page
visualizing the result set, which can then be browsed by the
user.

5 Future Work

11 http://sw.deri.org/2005/07/podcast/podcast-crawl-2005-
08.zip
12 http://www.w3.org/2000/10/swap/Primer

5.1 Syndicating Other Multimedia

It would be beneficial to create RSS 1.0 descriptions for more
generic multimedia files which do not possess a
corresponding feed. In doing so, there would be a wealth of
multimedia data available to various Semantic Web
applications, enriching the services such applications provide
to users and making such data more easily accessible and so
benefiting both.

The expression of Podcasts in RSS 1.0 format is essentially a
process of reorganising pre-structured data (see Fig. 3). In
fact, it may also be possible to explicitly define metadata in
an RSS 1.0 format for multimedia data where such metadata
does not already exist.

Figure 3: Some sources of metadata for a Semantic Web
representation of a Podcast file.

One possibility would be to parse and convert metadata
embedded in multimedia files. An example of such would be
ID3/ID4/APE tags embedded in MP3 files. Such tags provide
information relating to the file name, song or piece name,
creator or artist, album, genre and year. Other multimedia
metadata standards include the MPEG series of standards. Of
particular interest would be MPEG-7, a means of expressing
audio-visual metadata in XML. Upon parsing out such
information, a pre-templated RSS 1.0 file could be filled with
the available information. This would then be interpretable by
the same tools as the modified Podcasts.

Another interesting application of the RDF Podcast
specification is in relation to the Asterisk project13, an open
source Linux-based PBX application. A potential side use for
Asterisk on online bulletin boards has already been touted as
the next evolutionary step in web-based discussions by
Drupal/CivicSpace, whereby phone conversations made
through the Asterisk PBX would be recorded and stored as
streamed or downloadable audio conversations for other
readers of the bulletin board discussion.

Many sites have begun using voice recognition technology in
the indexing of multimedia files, one such site being
‘blinkx’ 14. Voice recognition software has seen many
advances in recent years, and is becoming more and more
accurate. Such sites use the ever-more advanced technology

13 http://www.asterisk.org/
14 http://www.blinkx.tv/downloads/blinkx_TV_White_Paper_
v1.0.pdf

to create a transcript of spoken words in the audio of files.
Indeed this would be quite useful in keyword searches.
On top of these transcripts then, HLT (Human Language
Technology) could be implemented to derive a structure from
the prose [5]. This structure could take the form of various
elements within an RSS 1.0 document, accompanying all
other metadata already located.

5.2 Extending the Crawler

The crawler could be extended in two ways: firstly, a more
practical means of achieving new feeds would be to offer user
submission options, whereby creators of new broadcasts can
issue their feed address to the system and the crawler can pick
it up. Also, it is soon planned to have the crawler run
continually. Another planned feature for the crawling
component includes a ping listener, where users can ping the
crawler as notification that their feed has been updated.

Some sites such as Odeo15 are making the Podcast crawling
process easier by providing multi-format metadata about both
Podcasts and site members. Odeo has made the Podcast
categorisation process easier by allowing users to both create
and subscribe to Podcasts that are tagged as belonging to a
certain category. The site also provides links to RSS 2.0
metadata / M3U files corresponding to both a particular
Podcast series and to the various series that a particular
member has subscribed to. There exists the opportunity to
use the advantages of such a system in the crawling of raw
Podcast feeds.

6 Conclusions

This paper has described methods for representing Podcast
information on the Semantic Web, beginning with the
development of an ontology to represent Podcast metadata
(and more generally, information on other multimedia audio
and video files) using RDF. We have created a means of
converting existing Podcast feeds to this specification by
means of an XSLT. We have also created a Podcast
Pinpointer application to aid in the intelligent search and
retrieval of relevant Podcasts by combining Podcast metadata
with other data that already exists in the Semantic Web
framework. As such, this prototype demonstrates interesting
possibilities for the use of audio and video metadata in future
Semantic Web multimedia applications.

Acknowledgements

This material is based upon works supported by the Science
Foundation Ireland under Grant No. SFI/02/CE1/I131.

References

[1] T. Berners Lee, “Semantic Web Road Map”,
http://www.w3.org/DesignIssues/Semantic.html, September
1998.

15 http://www.odeo.com/

[2] 5. L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng,
P. Reddivari, V. C. Doshi, J. Sachs.” Swoogle: A Search and
Metadata Engine for the Semantic Web”. In Proceedings of
the Thirteenth ACM Conference on Information and
Knowledge Management, Washington, DC, Nov. 2004.

[3] A. Harth. “SECO: Mediation Services for Semantic Web
Data”. IEEE Intelligent Systems, May/June 2004.

[4] A. Harth, S. Decker. “Optimized Index Structures for
Querying RDF from the Web”, Proceedings of the 3rd Latin
American Web Congress, Argentina, October 2005.

[5] W. Minker. “Semantic Analysis for Automatic Spoken
Language Translation and Information Retrieval”, European-
Japanese Conference on Information Modelling and
Knowledge Bases (EJC), Iwate, Japan, May 1999.

