
The Application of Modern PDA Technology for
Effective Handheld Solutions in the Retail Industry

S. Coughlan

Department of Electronic Engineering
National University of Ireland, Galway

Nun’s Island, Galway, Ireland
sean@excentric.com

J.G. Breslin
Power Electronics Research Centre

National University of Ireland, Galway
Nun’s Island, Galway, Ireland

john.breslin@nuigalway.ie

Abstract– A modern handheld solution for the retail
industry has been designed to replace older proprietary
hardware with a PDA-based (Personal Digital
Assistant) system. As part of the design, alternative
handheld hardware was identified; retail handheld
software was written; wireless communication
protocols were implemented; and server software and
utilities to access product databases were written. The
system uses off-the-shelf hardware for which there are
multiple suppliers, so the future of the system is secure.
The cost to the retailer is potentially one fifth that of
previous systems. As well as the lower price tag, the
handheld device is competitive due to the amount of
features the system boasts. A comprehensive set of
user-friendly applications has been created for product
creation, checking, etc. The speed of the system is
instantaneous, solving a common problem with many
handheld implementations on the market today. There
is a reduced cost in supporting and maintaining the
hardware, and there is also a greater opportunity for
future development of the product beyond the retail
sector. This system has undergone quality testing and
has been deployed successfully in four live shop
environments.

1 Introduction

A modern PDA-based handheld solution has been
designed to replace proprietary barcode scanning handheld
systems currently used in the retail industry.

Barcode scanning [1], [2] handheld mobile computing
devices have been commonplace in the retail industry for
some time. Most of these devices are specifically made for
use only in retailing. They come in two forms: networked
wireless and “batch” (non-wireless, where data must be
synchronised via cable before operation). They tend to run
some DOS variant on an x86 architecture.

The applications for these devices might typically
contain price check, product lookup and print label
functionality. Unfortunately, apart from high cost and
weight issues, these systems were traditionally limited to
displaying text (no graphical functionality), making user
interaction difficult.

As well as these factors, there are a number of other
motives for replacing the use of these devices:

• With few suppliers for these purpose-made devices,
the cost of buying a new device is high.

• Servicing and maintaining the devices is costly.

• There is a risk that these handheld devices may cease
to be produced without notice.

• The software that can be written for these types of
devices is limited.

The PDA sector has seen solid growth over the last few
years [3], and with it, there has been an increase in the
number of fields for which PDA applications have been
developed. Mobile handheld computers are providing
higher employee productivity and improved customer
service levels in a wide variety of industries and sectors.

The increasing adoption of wireless communications as
a means to enhance operational efficiency is propelling the
demand for such devices. Some of the industries in which
mobile computers have been applied include
manufacturing, transportation, military, field service and
healthcare. The retail industry is an obvious choice for the
development of wireless PDA applications, allowing
remote creation and maintenance of product information
on a central database server.

The possible benefits of replacing proprietary barcode
scanning handheld systems with PDAs include:

• There are many PDA suppliers, and many more
PDAs are being produced compared to the
proprietary devices previously mentioned; therefore
the cost of buying a PDA is lower, and because of a
competitive growing market, is getting lower.

• Writing software for a PDA is not limited to one
language, or one look-and-feel, and is made easier
because they are more widely supported and there
exists a wide range of pre-existing software.

• A PDA has multiple uses; the consumer is not only
going to be buying a retail handheld device, but a
productivity tool and mobile computer.

• Once the software for the PDA has been written,
there is greater flexibility to improve it later on.

Section II will detail the advantages and disadvantages of
potential hardware and software alternatives to previous
proprietary systems, and will give an overview of the
electronic devices and software technology that comprise
the final system design.

In section III, the technical details of the handheld are
dealt with in detail, including all of the software
technologies in use and how they are applied to turn the
handheld into a powerful retailer tool. The software
application is explained with the aid of screenshots.

0-7803-7852-0/03/$17.00 ©2003 IEEE ICIT 2003 - Maribor, Slovenia411

In section IV, the daemon on the server will be
described, including detailed information on how the
handheld communicates with it, i.e. the TCP/IP protocol
that had to be implemented.

Section V explains how sets of database libraries were
created to allow any Java application to access ISAM
(Indexed Sequential Access Method) [4] databases. The
structure of the system database will also be outlined,
detailing how the retailer’s product information is stored
and retrieved.

Section VI will conclude with the technical
accomplishments and customer benefits, with details of
work that could be carried out to further the system.

2 Choice of System Architecture

The basic system architecture involves multiple portable
handheld devices communicating via a wireless connection
with a central server hosting the product database.

The first objective was to find appropriate hardware for
the portable system to run on. Three categories of devices
were considered: cheaper DOS-based devices, devices
running a Microsoft OS, and Palm-type devices.

The DOS systems were ruled out early on due to the
large time required for development and limited future
possibilities. Devices running on either Microsoft CE
(pocket PC) or XP (tablet PC) were available that
incorporated the necessary barcode scanner and wireless
network card. The average cost was around two-fifths the
price of the previous proprietary device, with powerful
software programming potential.

However, Palm devices with scanner and network
functionality were available at half that price again.
Lowering the cost of the handheld solution was a primary
driving factor, and the Symbol Technologies SPT1846
PDA device [6] was finally chosen. The SPT1846 has a
resolution of 160x160, comes with 8MB of RAM, runs
PalmOS 4.1 and only weighs 0.38kg.

After the hardware was selected, the next objective was
to determine what development language would be used to
program the PDA device and how that software could be
enabled to access information on the server database.
There were a number of options available with regards to
writing software on the handheld including:

• The source of an existing telnet application for the
PalmOS could be modified to use the barcode
scanner. However, this would not make use of any
graphical or touch screen capabilities of the PDA.

• The open source code of the VNC viewer (Virtual
Network Computing) could also be modified to
access the barcode scanner. The VNC viewer
program allows a remote graphical login to a server
computer, and could be modified to allow a PDA
device to remotely access the database on the server.
However, the speed of the refresh rate of the VNC
viewer on the PDA device was tested, and
considered too slow for commercial use.

• Software using the PalmOS software development
kit (SDK) in C could be programmed giving
complete control over the device, with access to all

the native PalmOS application program interfaces
(APIs). It would also undoubtedly be the fastest
method to use. However, the source code would not
have been portable to other architectures.

• The software could be developed in Waba [7], a Java
virtual machine (JVM) specifically written for PDAs
that is faster than Sun’s Java 2 Micro Edition, and is
portable as it runs on Linux, Windows, and PalmOS
3/4/5. This option was judged to offer the best
opportunities for future development.

SuperWaba is an open source project based on Waba and
licensed under the GPL (GNU Public License). It supports
the PDA’s barcode scanner, so no modification to the
SuperWaba source was necessary to enable this
functionality. It also supports all the graphical features of
the PalmOS, including menu bars, buttons, list boxes, text
boxes, keyboard control, checkboxes, radio buttons etc.
Development in this language is quick, and can take place
in either a Windows or Linux environment. Also because
SuperWaba is open source, access to the native PalmOS
API is available.

The final issue to be resolved during the design phase of
this project was the manner in which SuperWaba
applications would access information stored on a database
on the server. The most obvious solution (and the one that
was adopted) was to write a piece of server software or a
daemon that would allow for communication with the
PDA device via the TCP/IP protocol over the wireless
network. 802.11b was chosen, as it has become the
standard wireless networking technology for both business
and home applications.

The wireless access point selected is the Symbol
Technologies AP4121. It supports auto-channel selection,
up to 127 clients, and has a top speed of 11 Mbps;
however any 802.11b access point would be equally
suitable. This particular access point works up to 90m
indoors. The access point is also “WiFi” compliant.

In brief, the final system architecture that was chosen, as
illustrated in Fig. 1, is as follows: PalmOS v4.1 runs on the
SPT1846 PDA, the SuperWaba virtual machine is installed
on PalmOS, and the handheld software application runs on
SuperWaba. The handheld software initialises the network
card, and communicates with the server (hosting the
retailer’s product information database) over TCP/IP via
the AP4121 wireless access point.

Handheld Software

PalmOS v4.1

SuperWaba

Symbol SPT1846 PDA

Merit DatabaseRedHat Linux v7.3TCP/IP
Daemon Software

Database Libraries

Central PC Server

802.11b WiFi

Fig. 1: Hardware and software layers: handheld client, network server and
product database.

412

The server runs the RedHat Linux 7.3 operating system,
and a custom Java-coded daemon, that allows network
access from PDA clients, is loaded at server start-up. The
daemon is a multi-threaded passive server and can
therefore handle multiple handheld connections. The
daemon allows communication with an ISAM database via
a set of custom libraries, and product or other information
is returned back to the handheld in real time.

3 Handheld Application

Waba [7] is a programming platform, optimised for PDAs
and other small devices, that contains a strict subset of the
Java language. Therefore, anyone familiar with Java can
write Waba, and use the same Java development tools. The
Waba SDK source code is available free to the public,
which has made it possible for other development projects
to use the Waba SDK as a basis for their software.

One such project is called SuperWaba, an extension of
Waba with a rich API for use by small device developers.
SuperWaba offers reduced libraries and a strict function
set due to the constraints of memory and processing speed
on PDAs. The time it takes to execute a program on a PDA
as compared to a personal computer is significant. The
developed handheld application was therefore designed to
omit computationally intensive tasks.

The handheld application is proprietary to open source,
and was developed in a combination of SuperWaba, C
using GCC and the PalmOS SDK. Over 15,000 lines of
actual source code were created in a complete Linux build
and deployment environment.

The following sub-applications were written and
implemented on the handheld:

• Price Check and Change: The user is able to scan
in a barcode, and get information on the product
associated with the barcode. Information includes:
product cost, tax rate, items per pack, profit margin,
price and description. The user has three means of
scanning in a product: by using the barcode scanner,
by entering the barcode number into the handheld, or
by searching and selecting a product from a product
lookup. From here the user can also change the
system’s sales price of the product, in which case the
margin will be updated and the new sales price will
be effective immediately on all tills.

• Purchasing: This allows the user to create, view or
edit purchase orders, goods inwards dockets and
returns dockets.

• Stock Adjust and Count: This allows the retailer to
conduct a stock count, or directly alter the stock level
figure.

• Newspapers and Magazines: This gives the retailer
a system whereby the delivery and returns
information on papers and magazines can be
accurately recorded on the database.

• Print Labels: After scanning the barcode of a
product, one may print a corresponding “shelf edge
label”. One can effortlessly walk around the shop

and after either making a price change or finding a
product without a shelf edge label, print the labels
out on a remote printer.

• Supplier Links: This allows the retailer to associate
a particular product with a supplier.

• Product Maintenance: This gives the retailer the
ability to create a product from the shop floor. It also
allows the retailer to modify the existing details of a
product on the database.

The range of functionality implemented in the handheld
software is shown in the screenshots of Figs. 2 and 3. The
system is secure, as each employee must enter an operator
login ID and passcode before the sub-applications can be
launched.

Also from the menu toolbar, the user can re-login, exit
the system, view system details, or change the IP address
that the handheld expects the server to be on.

Some custom implementations of many controls
exposed by the SuperWaba consortium were necessary and
these were returned to the development community. One
was the addition of a native method to SuperWaba that
allowed for the decoding of special EAN-13+2 barcodes.

Fig. 2: Initial screen showing menu options.

Fig. 3: Purchasing sub-section of the application.

413

Another custom modification was made to the list box
class for instances where the scrollbar of the list box could
not be removed. For example, even if there were no entries
in the list box, the scrollbar would still exist (disabled).
Visual real estate on the PDA screen was at a premium:
An extra few characters could be displayed without the
scrollbar, so code was written to optionally have a
scrollbar when creating an instance of a list box.

4 Networking Daemon and Remote Update

As mentioned previously, the software on the PDA
communicates over an 802.11b wireless link to the server.
A TCP/IP protocol had to be implemented to allow for
communication. The TCP/IP protocol specification
describes how the PDA, or any other client, can make
requests for data retrieval from the server or make requests
for information input into the server. It also describes the
appropriate responses for all the requests. Many possible
scenarios involving errors and warnings with data
retrieval/input are taken into account.

The multi-threaded TCP daemon was written in Java
and runs on port 28457. A virtual console screen is
allocated on the server that outputs a log of all
communications with the daemon. Every action carried out
on the handheld device is logged on the server and is
effectively stored immediately in the database.

To save processing time on the handheld, some
repetitive functions are carried out on the daemon, and
passed back to the handheld in a consistent format. One
example is when a product lookup takes place on the
handheld. Normally, 12 products fit on the screen at a
time; the user has the ability to page up and down through
this alphabetical list. Instead of the handheld reading 12
separate entries and extracting the product name for each,
it simply requests a product lookup from the daemon, and
the daemon passes back 12 entries.

A simple remote update and maintenance support utility
was also written, allowing the software developer to
upgrade software on the retailer’s server system via a dial-
up modem.

5 Database Libraries

The databases on which product information was stored
are ISAM databases [4], a precursor to relational
databases. ISAM databases allow records to be accessed
either sequentially (in the order they were entered) or
randomly (with an index). ISAM databases contain fixed
length records. When a database is being created, one must
specify the length of a record in the database. After the
creation, there is no way of adding a record with a length
greater than that specified originally. This is one major
disadvantage of ISAM. There are two files associated with
every ISAM database: a DAT file and an IDX file. The
DAT file contains the records in the database in sequential
order, and the IDX file contains the indexes used to access
specific records. ISAM updates the index file every time a
record is modified or added to the database. Each index in
the index file defines a different ordering of the records on
a particular key.

C Side Java Side

Application

JNI
Libraries

Functions

Classes

Methods

Virtual Machine

Fig. 4: JNI allows Java code that runs within the JVM to operate with
applications and libraries written in other languages.

A product database may have several indexes, based on
the information being sought. For example, a description
index may order products alphabetically by name, while a
price index may order the products by price. For an
alphabetical index of product names, the description field
of the record would be the key.

The Java Native Interface (JNI) is the native
programming interface for Java that comes as part of its
SDK. JNI allows Java code that runs within a virtual
machine to operate with applications and libraries written
in other languages, such as C. Programmers can use the
JNI to write native methods to handle situations where part
or all of an application cannot be written in Java. For
example, one may already have a library or an application
written in another programming language that must be
made accessible to Java applications.

Since the networking daemon was created in Java, a
Java-based method was necessary that could read and
write to an ISAM database, as well as use any other
features provided by ISAM. To do this proved challenging
as the only way to access ISAM databases was to use a C-
API provided by IBM called C-ISAM [5], and a shared C
library which acted as a wrapper to the static C-ISAM
libraries had to be created. Calls to the shared C library
could then be made from Java using the JNI as shown in
Fig. 4.

6 Conclusions

A modern handheld solution for the retail industry has
been developed. The system has undergone quality testing
and has been deployed successfully in four live shop
environments without any major problems. This system
uses off-the-shelf hardware, i.e. the Personal Digital
Assistant and the wireless access point. There are multiple
possible suppliers for all the hardware used, so the future
of the system is secure. Most importantly, the cost to the
retailer is potentially one fifth that of previous proprietary
systems.

A comprehensive set of user-friendly applications has
been written for the PDA. The speed of the system is
especially unique; there is no wait between the time a
product is scanned and the instant all the product
information appears on screen. This is a common problem
with many handheld implementations on the market in the
retail industry today.

414

The system can easily be updated to incorporate future
functionality such as scanning of products at the back
door, support for outer case barcodes or shelf
replenishment, and there are many opportunities for future
development of the system beyond the retail sector.

Acknowledgement

The authors gratefully acknowledge the contributions of
Michael Hughes and Merit Solutions, Claregalway, Ireland
who sponsored this project.

References

[1] M. Kuroki, T. Yoneoka, T. Satou, Y. Takagi, T.
Kitamura and N. Kayamori, “Bar-code recognition
system using image processing”, in Proceedings of
the 6th International Conference on Emerging
Technologies and Factory Automation Proceedings,
Sep. 1997, pp. 568-572.

[2] R. Muniz, L. Junco and A. Otero, “A robust software
barcode reader using the Hough transform”, in
Proceedings of Information Intelligence and Systems,
Oct. 1999, pp. 313-319.

[3] M. Quan, “PDA market poised for growth after
sluggish 2002”, Electronic Engineering Times, Feb.
2003, www.eetimes.com/story/OEG20030225S0036

[4] J.K. Mullin, “An improved index sequential access
method using hashed overflow”, Communications of
the ACM, vol. 15, no. 5, May 1972, pp. 301-307.

[5] IBM Informix C-ISAM library of C functions,
www.ibm.com/software/data/informix/cisam

[6] Symbol SPT1800 PDAs, www.symbol.com/palm
[7] Waba programming platform, www.wabasoft.com

415

	MAIN MENU

	TABLE OF CONTENTS
	AUTHOR INDEX
	TITLE INDEX
	TUTORIALS
	PROGRAM SCHEDULE

	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

