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Abstract - AC losses due to non-sinusoidal current waveforms 
have been found by calculating the losses at harmonic 
frequencies when the Fourier coefficients are known. An 
optimized foil or layer thickness in a winding may be found by 
applying the Fourier analysis over a range of thickness values. 
This paper presents a new formula for the optimum foil or layer 
thickness, without the need for Fourier coefficients and 
calculations at harmonic frequencies. The new formula 
requires the rms value of the current waveform and the rms 
value of its derivative. It is simple, straightforward and applies 
to any periodic waveshape. 

NOMENCLATURE 
Thickness of foil or layer. 

Duty cycle. 

Fundamental frequency of current waveform in Hz. 

Average value of current. 

rms value of the n* harmonic. 

rms value of the current waveform. 

rms value of the derivative of the current waveform. 

Ratio of the ac resistance to dc resistance at n* 
harmonic frequency. 

Number of turns per layer. 

Harmonic number. 

Number of layers. 

Radius of bare wire in wire-wound winding. 

ac resistance of a winding with sinusoidal excitation. 

dc resistance of a winding. 

Effective ac resistance of a winding, with arbitrary 
current waveform. 

dc resistance of a winding of thickness 6,. 

Rise time (0-100%). 

T Period of the current waveform. 

. Skin depth at fundamental frequency, 

0=27cf. 

6, Skin depth at the n* harmonic frequency. 

A d6,. 

q Porosity factor, see Fig. 1. 

I. INTRODUCTION 
ransformers are operated at high frequencies in order 
to reduce their size [l]. Switching circuits and T resonant circuits have greatly improved the 

efficiencies of power supplies. These power supplies have 
non-sinusoidal current waveforms and give rise to additional 
ac losses due to harmonics. AC resistance effects due to 
sinusoidal currents were treated by Bennett and Larson [2] 
and this work was tailored specifically for transformers by 
Dowel1 [3]. These works are based on a one-dimensional 
solution of the diffusion equation as applied to conducting 
parallel plates. Dowell's formula has been found to reliably 
predict the increased resistance in cylindrical windings where 
the foil or layer thickness is less than 10% of the radius of 
curvature. The formula has been utilized in many 
applications such as planar magnetics by Kassakian [4] and 
Sullivan [5], matrix transformers by Williams [6], toroidal 
inductors by Cheng [7], distributed air-gaps by Evans [8] and 
slot bound conductors by Hanselman [9]. 

With the advent of switch mode power supplies, attention 
switched to non-sinusoidal current waveforms. These 
currents were decomposed into Fourier components; the 
harmonic components are orthogonal so that the total loss is 
equal to the sum of the losses calculated by Dowell's formula 
for the amplitude and frequency of each harmonic in turn. 
Venkatraman [ 101 showed that for a pulsed waveform typical 
of a forward converter, there is an optimum layer thickness to 
minimize ac losses. Carsten [ l l ]  extended the analysis to 
square waveforms, which are encountered in full bridge 
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converters and to triangular waveforms, which occur in filter 
chokes. Vandelac [12] extended the analysis to flyback 
converters. The optimum layer thickness is found as follows: 

Calculate the Fourier coefficients 

Calculate the losses at each harmonic frequency 

Calculate the total losses for each thickness in a range 
of values 

Read the optimum thickness from a graph of ac 
resistance versus layer thickness 

Typically this might involve loss calculations at up to 30 
harmonics for up to 10 thickness values in order to find the 
optimum value. Furthermore Fourier coefficients are only 
available for a few waveforms. 

This paper presents a new formula for ac resistance and the 
optimum layer thickness for any current waveform. The 
formula only requires knowledge of the rms value of the 
current waveform and the rms value of its derivative. Both 
these quantities can be easily measured or calculated with 
simulation programs such as PSPICE. The results are just as 
accurate as the cumbersome method based on Fourier 
analysis. 

0 

11. THE AC RESISTANCE 
The real part of Dowell's formula gives the ac to dc 

resistance factor: 

1 r sinh(2A) + sin(2A) 
cosh(2A) - COS(~A) Rac - A  - - I  dc +- 2(p2 - 1) smh(A) - sin(A) 

1 3 cosh(A) + cos(A) 1 
where A is the ratio of the layer thickness d to the skin depth 
6,. This is a very good approximation to the original 
cylindrical solution, particularly if the layer thickness is less 
than 10% of the radius of curvature. Windings which consist 
of round conductors, or foils which do not extend the full 
winding window, may be treated as foils with equivalent 
thickness d and effective conductivity a,=qa. This 
calculation is shown graphically in Fig. 1, a detailed 
treatment of wire conductors is given by Ferreira [ 131 and 
Jongsma [14]. The orthogonality of skin and proximity 
effects in wire windings is described by Ferreira [ 131. 

The trigonometric and hyperbolic functions in (1) may be 
represented by the series expansions: 

sinh2A+sin2A 1 4 16 = -+-A - -A7 + O(A1'), (2) 
C O S ~ ~ A - C O S ~ A  A 45 4725 

smhA-sinA 1 
coshA+cosA 6 2520 

%-A3 - L A 7  +O(A1'). 

Fig. 1. Porosity factor for foils and round conductors. 
If only terms up to the order of A3 are used, the relative 

error incurred in (2) is less than 1.2% for A 4 . 2  and the 
relative error in (3) is less than 4.1% for A 4  and is less than 
8.4% if A<1.2. The asymptotic values of the functions on the 
left hand side of (2) and (3) are 1 for A>2.5. Terms up to the 
order of A3 are sufficiently accurate to account for the Fourier 
harmonics which are used to predict the optimum value of A 
which is normally in the range 0.3- 1. 

Thus (1) becomes 

(4) R,, - w 4 --1+-A 
Rdc 

where 

5pz -1 w=- 
15 

An arbitrary periodic current waveform, may be 
represented by its Fourier Series 

m 

i(t) = Id, + a, cos n a t  + bn sin nwt . (6) 
n=l 

The sine and cosine terms may be combined to give an 
alternative form 

m 

i(t) = Idc + c, cos (n cot + qn (7) 
n=l 

where I, is the dc value of i(t) and c, is the amplitude of the 
n* harmonic with corresponding phase cp,. The rms value of 
the n"' harmonic is I,=c,ld2. 
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This is a straightforward expression for the effective 
resistance of a winding with an arbitrary current waveform 
and it may be evaluated without knowledge of the Fourier 
coefficients of the waveform. 

The total power loss due to all the harmonics is 

m 

P = R 

where kp, is the ac resistance factor at the n"' harmonic 
frequency, which may be found from (1) 

+ R dc C k pn In2  (8) 
n=l 

1 1 Sinh(2&A) +Sin(2&A) 
- - 

111. THE OPTIMUM CONDITIONS 
There is an optimum value of d, which gives a minimum 

value of effective ac resistance. Define & as the resistance 
of a foil of thickness 6, such that 

Cosh(24nA) - Cos(2JnA) 

2(p2 -1) Sinh(&A)-Sin(&A) 

3 Cosh(&A) + Cos(&A) 
+------- 

kp  =&A 

which implies that Kff is the ac resistance due to i(t) so that P=KffIm2, I, 
being the rms value of i(t). Thus the ratio of effective ac 
resistance to dc resistance is 

Re, - Reff --A-. 
Rdc R8 

Evidently, a plot of Kff I & versus A has the same shape as 
a plot of Kn versus d at a given frequency. A 3-D plot of K, 
I & versus A with p, the number of layers in the winding, on 
the third axis is shown in Fig. 2. 

minima p = 1 0  

m 

Idc2 + C k p n 1 n 2  
Re, - n=l -- 

2 
dc Irms 

The skin depth at the n"' harmonic is 6,=6,& and, from 
(4), the ac resistance factor at the n"' harmonic frequency is 

k p n = l + - n  w 2 4  A 
3 

Substituting (1 1) into (10) yields 
15 

10 
e, 

R 8  

0 

- 

dc 
2 Lns 

The rms value of the current in terms of its harmonics is 

n=l 
A 1.5 

The derivative of i(t) in (7) is 

(14) 
di 
- = - m C n c n  sin(nwt+@,> 

and the rms value of the derivative of the current is [ 151 

dt n=l 

Fig. 2. Plot of ac resistance versus A and number of layers p. 
For each value of p there is an optimum value of A where 

the ac resistance of the winding is minimum. These optimum 
points lie on the line marked minima in the graph and the 
corresponding value of the optimum layer thickness is 

dopt = Aopt6O . 

From (1 8), using (1 6 )  which, upon substitution into (12) using (13), yields 
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The optimum value of A is found by talung the derivative 
of (20) and setting it to zero. 

The optimum value of A is 
I 

Substituting this result into (16) yields the optimum value 
of the effective ac resistance with an arbitrary periodic 
current waveform: 

Jongsma [ 141 and Snelling [ 161 have already established 
this result for sinusoidal excitation. The corresponding value 
for wire conductors with sinusoidal excitation is 312 [14,16]. 

We may also write (16) in term of A, 

/ \ 4  

We now have a set of simple formulas with which to find 
the optimum value of the foil or layer thickness of a winding 
and its effective ac resistance, these formulas are based on 
the rms value of the current waveform and the rms value of 
its derivative. 

IV. VALIDATION 
Consider the pulsed current waveform in Fig. 3 along with 

its derivative, which is typical of a forward converter. This 
waveform has a Fourier series: 

The rms value of I(t) and the the rms value of its derivative 
are 

t r  

Fig.3. Pulsed current waveform and its derivative. 

The optimum value of A given by the Fourier series (25), 
for p=6 and t,/T=4% is 0.418 and the value given by the 
proposed formula (22) is 0.387 which represents an error of 
7.4%. 

Waveform 5 in Table I1 is an approximation to the pulse in 
Fig. 3 and the optimum value of A using Fourier analysis is 
0.425 which represents an error of 7.2% when compared to 
the Fourier analysis of the waveform given by (25). 
Evidently waveforms with known Fourier series are often 
approximations to the actual waveform and can give rise to 
errors which are of the same order as the new formula, which 
is simpler to evaluate. 

At 50 lcHz the skin depth in copper is 0.295 mm. With 
AOpt=0.418, dopt=0.295xO.418=0. 123 mm. 

The new formula may be validated by comparing the value 
of Aopt obtained with (22) and the value obtained with Fourier 
analysis by plotting (lo), using (9), over a range of values of 
A and finding the optimum value. The results are shown in 
Table I for the waveforms in Table 11. In general the 
agreement is within 3%, with the exception of waveform 5 
where the error is 6.5%. For the Fourier analysis 19 
harmonics were evaluated and was calculated for 20 
values of A. This means that (9) was computed 380 times for 
each waveform in order to find the optimum layer thickness, 
(22) was computed once for the same result. For 1 to 3 
layers the accuracy of the proposed formula is not very good, 
however, as evidenced by Fig. 2, the plot of k&, is almost 
flat in the region of the optimum value of A, and therefore the 
error in the ac resistance is negligible. 

I, = I o  0 . 5 - 2  \i Z T  

11, = 1.p- 3t,T 
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TABLE I 
VALIDATION RESULTS, 
p=6, D=0.4, t,lT=4% 

Waveform No. I Fourier Analvsis 1 New Formula I 
0.539 0.538 
0.490 0.481 
0.348 0.340 

4 0.429 0.4 15 
5 0.416 0.389 

V. CONCLUSIONS 
A new formula has been presented to find the optimum foil 

or layer thickness in a multilayer winding. The formula 
applies to any arbitrary periodic current waveform. It is 
computationally easier to use than Fourier analysis while 
enjoying the same level of accuracy. It has a wider range of 
application than the Fourier approach by virtue of its 
simplicity. 
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TABLE I1 
FORMULAS FOR THE OPTIMUM THICKNESS OF A WINDING FOR 

Current Waveform 
1. 

2. 

3. 
4 .  

4. 

5 .  

lop+: 2 2  

9. 

'p/$qr-AT: 2 2  

+ In waveform 2 for n=k=l, 

VARIOUS WA 
and I,' 

1 =I, , A  
s 2n 1 =- 
mu T A ' '  

I, =I0E 

I m * = I o  1-- J ":T 

I'm = I 0 d +  

I , = I o  D-' E 

L 

I, = I,/+ 

I, =I./; 

41 I' =A - 6 T  

FORMS, Y=(5p2-1)/15, p=NO. OF L 
Fourier Series, i(t) 
Sin(wt) 

~ + ~ T { - ~ ) c o s ( n m t )  2DI 4D10 Cos(nrD) 

+ 
= 0=I 1-4n2D2 

41, . 
10(2D -1) + C-Sin(nnD) 

nn 

xSinc nn- Cos(not) I 9 

xSinc nn' Cos(not) ( 
2I,Sin(nnD) 8 xZn2D(1 - D) Sin(nmt) 

'ERS 

1- 
Y Aopt = 

]EN (the set of natural numbers), and in waveform 3 for n=k=l/DEN, 

the {expression in curly brackets} is replaced by n2/16. 
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