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Abstract - Increased switching frequencies in magnetic 
components have resulted in renewed attention to the problem of  
proximity effect losses in layered transformer windings. The 
ideal situation is to design at the point of  minimum a.c. winding 
resistance. This paper provides a unified approach which gives 
exact a.c. resistance formulas for pulsed, rectangular and 
triangular waveforms, with variable duty cycle. In every case an 
approximation to the a x .  resistance versus layer thickness curve 
is derived and the optimum point can be found with a simple 
calculation involving the number of  harmonics (related to rise 
time), the duty cycle and the number of layers. This process 
yields a result that is at least as accurate as reading the point 
from a generated graph (without the considerable effort involved 
in generating the graph). 

NOMENCLATURE 
Constants in approximation forrnulas 

Thickness of foil or layer. 

Duty cycle. 

Frequency of current waveform in Hz. 

Average value of current. 

R.M.S. value of the nt” harmonic. 

Peak positive value of current. 

R.M.S. value of current waveform. 

Proximity effect factor at nth harmonic. 

Harmonic number. 

Maximum number of harmonics. 

Number of layers. 

Radius of bare wire in wire-wound winding. 

d.c. resistance of a winding. 

Effective ax .  resistance of a winding. 

d.c. resistance of a winding of thiickness 6,. 

Rise time. 

Period of current waveform. 

Skin depth at the nth harmonic. 

6, 
A dJ6. 

Skin depth at hndamental frequency, f. 

1. INTRODUCTION 

he increased switching frequencies in magnetic 
components have resulted in renewed attention to the 
problem of proximity effect losses in layered 
transformer windings. The ideal situation is to design 

at the point of minimum a x .  winding resistance in order to 
minimize these losses. Dowell [ l ]  gives an ax .  resistance 
factor for sinusoidal currents, and Carsten [2] deals with 
pulned, triangular and square waveshapes with 50% or 100% 
duty cycle. Perry [3] deals with multilayer windings with 
variable layer thickness for sinusoidal waveforms. 
Verikatraman [4] refined the pulsed waveform approach by 
introducing a variable duty cycle. Vandeiac and Ziogas [5] 
introduced an alternative graphical approach based on MMF 
diagrams. In all cases, the optimum point is found by plotting 
the a.c. winding resistance against layer thickness and the 
optimum layer thickness is read from the graph. This is not a 
straightforward task since the Fourier Series of the waveform 
is required, and the a.c. resistance at each frequency 
component must be calculated. The a.c. analysis in [2] to [5] 
is based on Dowell’s formula [ l ]  which is a one-dimensional 
plate approximation to the field solution for a cylindrical 
winding [ 6 ] ,  this approach is justified when the thickness of 
the layer is less than 5% of the radius, of curvature. 

This paper provides a unified approach which gives exact 
formulas for bipolar rectangular, triangular and sinusoidal 
waveforms and their rectified equivalents, with variable duty 
cycle, as illustrated in Table 1 .  In every case an 
approximation to the a.c. resistance versus layer thickness 
curve is derived and the optimum point can be found with a 
simple calculation involving the number of harmonics 
(related to rise time), duty cycle and number of layers. This 
process yields a result that is at leasd as accurate as reading 
the point from a generated graph (without the considerable 
effort involved in generating the graph). 

These new formulas have been derived for a wide range of 
waveshapes and are given in terms of the duty-cycle, number 
of layers and harmonics, the time previously required to plot 
an endless supply of resistance-thickness graphs, for cases 
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where these variables are changing, is eliminated. This paper 
gives an example of a push-pull converter and shows that a 
multilayer foil winding is superior to a round conductor 
configuration. 

11. WAVEFORM ANALYSIS 
Formulas for the optimum winding or layer thickness are 

unique to each current waveform illustrated in Table 1, but 
the same method is followed in each case. A pulsed (or 
rectified rectangular) waveform with variable duty cycle as 
encountered in a push-pull converter is analyzed to illustrate 
the methodology. 

The current waveform shown in Fig. 1 is representative of 
that in the winding of a forward or push-pull converter. The 
physical layout of a typical winding is illustrated in Fig. 2, 
round conductors are converted to equivalent layers as 
shown. The waveform in Fig. 1 is an even function about a 
zero point at the center of the pulse. The Fourier Series is 

m 
2 nx 
T i(t) = a, + Cal lcos( -  t) 

n = l  

'1' 
2 
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Fig. I : Pulsed current waveform with a duty-cycle of D and a 
rise time t,. 

2ro d i -  

d=0.'886(2r0 p = 6 layers' 

Fig. 2: Equivalent layers in a wire wound winding. 

The average value of current is Idc = 1,D. The R.M.S. 
value of current is 1,dD The R.M.S. value of the nth harmonic 
is 

I ,  =- ['I L S m ( n n D )  . ] =- Sin(n.nD) (3) f i  nn nn 

111. PROXIMITY EFFECT FACTORS 
The pulsed waveform in Fig. 1 is not an ideal case as there 

is a rise time and fall time associated with it so that a finite 
number of harmonics are required. Typically, the upper limit 
on the number of harmonics is 

35 N=-- 
t 96 

(4) 

where t, is the percentage rise time as shown in Fig. 1 and 

The total power loss is P = R&,,s which is made up of the 

N is odd. For example, a 2.5% rise time would give N == 13. 
2 

d.c. component and N harmonics: 

r r = l  n = l  

where RaCl, is the a.c. resistance at the nt" harmonic and &, 
is the d.c. resistance of a foil winding of thickness d. k,,, is 
the proximity effect factor due to the nth harmonic [ 11: 

Sinh(2An) +Sin(%A,,) 
Cosh(2An ) - C O S ( ~ A ~ ,  ) 

k,,, =A11 (6) 1 2(p2  3 -1) Cosh(A,)+C_(An] Sinh(A,,)-Sin(A,) 

where p is the number of layers required, and A, is equal to 
the thickness of a layer, d, divided by 6,,, the skin depth at the 
nt" harmonic. Defining 6, as the skin depth at the 
fundamental frequency of the pulsed waveform, 6, and A, are 
given by 
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minima p = 1 0  

Sinh(2LA)  + Sin (2LA)  + 

Cosh(2LA) - C o s ( 2 h A )  

2(p2 - 1) Sinh(&A) -Sin(&A) 

- 

3 Cosh(&A) + Cos(&A) - 

where 

2 Since P = ~ f f l l m s  , equation (5) can Ibe rearranged to yield 

m 

2 
dc 4" 

2 m  1 .  
= D + ~ 1 -Sin2 (n7cD)kP,, 

z 2 D  ,,=, n2 

Define Rs as the d.c. resistance of a foil of thickness 6, 
such that 

(9) 

Evidently, a plot of R,ff / R6 versus A would have the same 
shape as a plot of Reff versus d at a given frequency. A 3-D 
plot of kff i versus A with p, the number of layers, on the 
third axis is shown in Fig. 3. 

For a given number of layers there is an optimum point, 
Aopt, at which the a.c. resistance is minimum. These optimum 
points lie on the line marked minima in the graph, and the 
corresponding optimum thickness is givsen by 

A I S  

Fig. 3: Plot of &ff i R6 versus A, for N = 13 harmonics, D = 

50% duty-cycle. 

IV. APPROXIMATE ANALYSIS 

A .  Taylor Series 
The following general approximations to y~ and y2 can be 

made by expanding the trigonometric functions using Taylor's 
series and limiting them to three terms: 

Sinh(2A) + Sin(2A) N _  1 A3 
Cosh(2A) - Cos(2A) A a 

N +.- Y l  = 

Sinh(A) - Sin(A) A3 
y 2  Cosh(A) + Cos(A) b 

The unknown parameters a and b are found to be 7.5 and 6 

g- 

respectively from the Taylor's series analysis. 

B. Regression Analysis 
The values of a and b may be further refined using a 

nonlinear curve fitting method, which fits a user-defined 
model to data points. A model is linear in its parameters if 
the parameters are all added or multipled times a variable. 
However, this is not the case in the above approximations, 
and the nonlinear estimation method developed by Marquadt 
and Levenberg [7],  as detailed in the appendix, is used. 
Applying this method to the two approximations yields 
normal equations for a and b as follows: 

N .  N., 

u = l  u=1 

where A is the independent variable, Nd is the number of 
data points taken, and y, and y2 are the corresponding 
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dependent variables in (12). For A between 0.1 and 1.0. a is 
11.571 and b is 6.1 82. 

The proximity effect factor kptl  in (12) may be 

approximated as: 

Substituting this expression into (8) using (7) and (9) yields 

The derivative of (1 5) with respect to A is used to calculate 
the optimum value of A: 

Setting this equal to zero gives 

If D = 0.5, then the formula for Aopt is given by 

4 N 1  

n- 11=1 odd n-  
0.5 + -7 

2p2 - 2  

For large N (short rise time) and with a = 11.571, b = 

6.182, Aopt is given by 

(18) 
1 

Aopt  = 4 /- (0.1 3 I 2p2 - 0.0261) 

Substituting (16) in (15) and then in (9) yields an 
approximation for R,ff/kc: 

In general, Reff/Rdc is in the range 1.3 to 1.4 at the optimum 
point. 

Formulas for other waveshapes are given in Table 1. 

V.  DESIGN EXAMPLE: PUSH-PULL CONVERTER 
A push-pull converter is shown in Fig. 4 and its associated 

waveforms are illustrated in Fig. 5. The current waveform in 
each primary winding may be approximated to the pulsed 
waveform of Fig. 1, with the ripple neglected. 

Fig. 4: Push-pull converter, circuit. 

0 DT' l' T 

Fig. 5:  Push-pull converter, waveforms. 
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Take D = O S ,  p (number of foil layers) = 6, t, (rise time) = 

2.5%, and f = 50 kHz. Fort, = 2 S % ,  take 13 harmonics. 

1 

d([13 + 11 / 2)(0.13 12 x 62 - 0.0261) 
- = 0.42 *opt = 

O 4 3  = 0.295 mm 66 6 = - =  

The optimum foil thickness is do,, = Aopt&, = 0.42 x 0.295 = 
0.12 mm. The a.c. resistance is found from (1 9): 

Re, - __ - 1.314 
Rdc 

Alternatively, the winding could be constructed with a 
single layer of round conductors; assuming a window height 
of 30 mm, a 2.14 mm diameter of bare copper wire has tlie 
same copper area as a 0.12 x 30 mm foil, in this case p = 1, d 
= 0.886(2.14) = 1.896, A = 1.89610.295 = 6.427, and 

= 4,203 
R dc 

11=1 

where (xu, yu) are the corresponding data point pairs 
(independent variable, dependent variable) for U froin 1 to n, 
the total number of data points, and f(xu, a, b, ...) is the 
nonlinear hnction evaluated at its corresponding x, value. 

The unknowns a, b, . . . are to be chosen to make e2  a 

e2  with respect to a, minimum, so that the derivatives of 

b, . . . must vanish. Therefore, 

Normal equations for the unknown parameters are then 
derived from-these equations. Evidently in this case, the choice of a foil is vastly superior. 

VI. CONCLUSIONS 
The paper describes a general procedure to calculate a.c. 

resistance of multilayer windings for general waveshapes 
encountered in switching mode power supplies. Variable 
duty cycle is an integral part of the procedure. In each case, a 
simple and accurate approximation is established so that the 
optimum layer thickness may be found from knowledge of the 
number of layers, number of harmonics (related to rise time) 
and duty cycle. 

APPENDIX 
The Marquadt and Levenberg method represents a 

compromise between linearisation (or Taylor‘s series) 
methods and the steepest descent method and appears to 
combine the best features of both while avoiding their most 
serious limitations. 

Nonlinear models all have the general form 
y = f(x,a, b, ...)+ E where y is the dependent variable, x is 
one or more independent variables, a, b, . . . are the unknown 
parameters to be estimated, f() is the nonlinear function of the 
unknown parameters and independent variables, and E is the 
error term. 

Marquadt’s method can be used to estimate the parameters 
a, b, . . . of the nonlinear model using given data points. The 
residual sum of squares formula for the model given above 
can be written as 
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Table 1 : Approximation formulas for the optimum thickness and ac to dc resistance ratio of a winding for various waveforms, 

Current Waveform and 
Corresponding Fourier Series 

i(t) = l ,D+C4Si i i (nxD)Cos (nwt )  = 21 

0 ~I I 

Formulas for [Reff/RdcIopt Formulas for Aopt 

8 ” Sin’(nxD) (2D- I)’ 
n , , = i  n 2  

8 ”  
x , > = I  

Y -i x S i n 2  (nxD) 

* For n = k = 112D E N (the set of natural numbers), the expressions in {curly brackets) are replaced by 5 . 
16 

7L2 + For n = k = l1D E N (the set of natural numbers), the expressions in {curly brackets} are replaced by - .  
16 
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Table 1 (continued) 

Current Waveform and 
Corresponding Fourier Series 

Formulas for YRefl/Rdc]opt 

I_ 

*"PI = 

Formulas for Aopt 

- 
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