A Novel Optimisation Scheme for Designing High Frequency Transformer Windings

J.G. Breslin, W.G. Hurley
Department of Electronic Engineering, University College, Galway, Ireland
E-mail john.breslin@ucg.ie, ger.hurley@ucg.ie

Abstract

With the miniaturisation of magnetic components in power supplies, increased switching frequencies in the $\mathrm{kHz}-\mathrm{MHz}$ range are required. But with these increased frequencies comes the problem of increased winding losses due to proximity effects. This paper describes how waveforms encountered in switch-mode power supplies may be incorporated into a transformer design algorithm, with emphasis on minimising ac resistances (and hence power dissipation) in the windings. Approximation formulæ for the optimum thickness of a foil have been found using regression analysis and Taylor series approximations for duty-cycle varying waveforms, and are given in terms of N , the number of harmonics, and p, the number of layers of foil required. These formulæ will be implemented as part of the winding selection process in a Windows-based package.

1. Waveform Analysis

The formula for the optimum thickness of a layer in a transformer winding may be derived for waveforms with varying and non-varying duty-cycles. This has been done for a number of waveforms as shown in Table 1, and the formula for a duty-cycle varying pulsed (or rectified square) waveform is now derived as a sample case.

The waveform shown in Figure 1 is representative of the current in a push-pull winding. I_{o} is related to the dc output current; for a $1: 1$ turns ratio, it is equal to the dc output current for a 100% duty cycle.

Figure 1 can be taken as an even function about 0 as shown in Figure 2. We shall take one period T (marked by dashed arrow) to calculate the Fourier Series of i.

For a range (-l, l), an even function has a Fourier Series of the type $\mathrm{f}(\mathrm{x})$:

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{\mathrm{a}_{0}}{2}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \operatorname{Cos} \frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{l}} \tag{1}
\end{equation*}
$$

In our case, $\mathrm{l}=\mathrm{T} / 2$, $\mathrm{x}=\mathrm{t}$ and $\mathrm{f}(\mathrm{x})=\mathrm{i}(\mathrm{t})$. Also, since $\omega=$ $2 \pi / \mathrm{T}, \mathrm{n} \pi \mathrm{x} / \mathrm{l}=\mathrm{n} \pi \mathrm{t} 2 / \mathrm{T}=\mathrm{n} \omega \mathrm{t}$.

$$
\begin{equation*}
\mathrm{i}(\mathrm{t})=\frac{\mathrm{a}_{0}}{2}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \operatorname{Cos}(\mathrm{n} \omega \mathrm{t}) \tag{2}
\end{equation*}
$$

Calculating the Fourier coefficients a_{n} and a_{0} yields

Figure 1: Pulsed current waveform with a duty-cycle of D

Figure 2: Same waveform taken as an even function

$$
\begin{align*}
a_{n} & =\frac{2}{l} \int_{0}^{1} f(x) \operatorname{Cos} \frac{n \pi x}{l} d x=\frac{4}{T} \int_{0}^{\frac{T}{2}} i(t) \operatorname{Cos}(n \omega t) d t \\
& =\frac{4}{T}\left[\int_{0}^{\frac{D T}{2}} I_{0} \operatorname{Cos}(n \omega t) d t+\int_{\frac{D T}{2}}^{\frac{T}{2}} 0 \operatorname{Cos}(n \omega t) d t\right] \tag{3}\\
& =\frac{2 I_{0}}{n \pi} \operatorname{Sin}(n \pi D) \\
a_{0} & =\frac{2}{l} \int_{0}^{1} f(x) d x=\frac{4}{T} \int_{0}^{\frac{T}{2}} i(t) d t \\
& =\frac{4}{T}\left[\int_{0}^{\frac{D T}{2}} I_{0} d t+\int_{\frac{D T}{2}}^{\frac{T}{2}} 0 d t\right]=2 I_{0} D \tag{4}
\end{align*}
$$

These coefficients are then inserted into the expression for $i(t)$ giving

$$
\begin{equation*}
\mathrm{i}(\mathrm{t})=\mathrm{I}_{0} \mathrm{D}+\sum_{\mathrm{n}=1}^{\infty} \frac{2 \mathrm{I}_{0}}{\mathrm{n} \pi} \operatorname{Sin}(\mathrm{n} \pi \mathrm{D}) \operatorname{Cos}(\mathrm{n} \omega \mathrm{t}) \tag{5}
\end{equation*}
$$

The average value of current is $I_{d c}=I_{o} D$. The RMS value of current is $I_{0} \sqrt{ } D$. Also, the Fourier Series of i can be expanded as

$$
\begin{align*}
& i(t)=I_{0} D+\frac{2 I_{o}}{\pi}\left(\frac{1}{1} \operatorname{Sin}(\pi D) \operatorname{Cos}(\omega \mathrm{t})\right. \tag{6}\\
& \left.+\frac{1}{2} \operatorname{Sin}(2 \pi \mathrm{D}) \operatorname{Cos}(2 \omega \mathrm{t})+\frac{1}{3} \operatorname{Sin}(3 \pi \mathrm{D}) \operatorname{Cos}(3 \omega \mathrm{t})+\ldots\right)
\end{align*}
$$

If $\mathrm{D}=0.5$, this reduces to

$$
\begin{align*}
& \mathrm{i}(\mathrm{t})=\frac{\mathrm{I}_{\mathrm{o}}}{2}+\frac{2 \mathrm{I}_{\mathrm{o}}}{\pi}\left(\frac{1}{1} \operatorname{Cos}(\omega \mathrm{t})-\frac{1}{3} \operatorname{Cos}(3 \omega \mathrm{t})\right. \\
& \left.+\frac{1}{5} \operatorname{Cos}(5 \omega \mathrm{t})-\ldots\right) \tag{7}
\end{align*}
$$

The RMS value of the nth harmonic is

$$
\begin{equation*}
\mathrm{I}_{\mathrm{n}}=\frac{1}{\sqrt{2}}\left[\frac{2 \mathrm{I}_{\mathrm{o}}}{\mathrm{n} \pi} \operatorname{Sin}(\mathrm{n} \pi D)\right]=\frac{\sqrt{2} \mathrm{I}_{\mathrm{o}}}{\mathrm{n} \pi} \operatorname{Sin}(\mathrm{n} \pi D) \tag{8}
\end{equation*}
$$

The total power loss is $\mathrm{P}=\mathrm{R}_{\mathrm{eff}} \mathrm{I}_{\mathrm{rms}}{ }^{2}$ which is made up of the dc component and the harmonics:

$$
\begin{align*}
\mathrm{P} & =\mathrm{R}_{\mathrm{dc}} \mathrm{I}_{\mathrm{dc}}^{2}+\mathrm{R}_{\mathrm{ac} 1} \mathrm{I}_{1}^{2}+\mathrm{R}_{\mathrm{ac}} \mathrm{I}_{2}^{2}+\ldots \\
& =\mathrm{R}_{\mathrm{dc}} \mathrm{I}_{\mathrm{dc}}^{2}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{R}_{\mathrm{ac}_{\mathrm{n}}} \mathrm{I}_{\mathrm{n}}^{2} \tag{9}
\end{align*}
$$

$R_{a_{n}}$ is the ac resistance due to the nth harmonic, and is given by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ac}_{\mathrm{n}}}=\mathrm{k}_{\mathrm{p}_{\mathrm{n}}} \mathrm{R}_{\mathrm{dc}} \tag{10}
\end{equation*}
$$

where $k_{p_{n}}$ is the proximity effect factor due to the nth harmonic [1]. Thus, P is equal to

$$
\begin{equation*}
\mathrm{P}=\mathrm{R}_{\mathrm{dc}} \mathrm{I}_{\mathrm{dc}}^{2}+\mathrm{R}_{\mathrm{dc}} \sum_{\mathrm{n}=1}^{\infty} \mathrm{k}_{\mathrm{p}_{\mathrm{n}}} \mathrm{I}_{\mathrm{n}}^{2} \tag{11}
\end{equation*}
$$

Since $P=R_{\text {eff }} I_{\text {rms }}^{2}$, the above can be rearranged to give

$$
\begin{align*}
\frac{R_{e f f}}{R_{\mathrm{dc}}} & =\frac{\mathrm{I}_{\mathrm{dc}}^{2}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{k}_{\mathrm{p}_{\mathrm{n}}} I_{\mathrm{n}}^{2}}{\mathrm{I}_{\mathrm{rms}}^{2}} \\
& =\frac{\mathrm{I}_{\mathrm{o}}{ }^{2} \mathrm{D}^{2}+\frac{2 \mathrm{I}_{\mathrm{o}}{ }^{2}}{\pi^{2}} \sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{2}} \operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D}) \mathrm{k}_{\mathrm{p}_{\mathrm{n}}}}{\mathrm{I}_{\mathrm{o}}{ }^{2} \mathrm{D}} \tag{12}
\end{align*}
$$

$$
=\mathrm{D}+\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{2}} \operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D}) \mathrm{k}_{\mathrm{p}_{\mathrm{n}}}
$$

The pulse in Figure 1 is an ideal case. Normally, there would be a rise time and fall time associated with the waveform so that a finite number of harmonics are required. Typically, the upper limit on the number of harmonics is

$$
\begin{equation*}
\mathrm{N}=\frac{35}{\mathrm{t}_{\mathrm{r}} \%} \tag{13}
\end{equation*}
$$

where t_{r} is the percentage rise time and N is odd. For example, a 2.5% rise time would give $\mathrm{N}=13$.

Define R_{δ} as the dc resistance of a foil of thickness δ_{o}, where δ_{o} is the skin depth at the fundamental frequency of the pulsed waveform. $R_{d c}$ is the dc resistance of a foil of thickness d and

$$
\begin{align*}
& \frac{\mathrm{R}_{\delta}}{\mathrm{R}_{\mathrm{dc}}}=\frac{\mathrm{d}}{\delta_{\mathrm{o}}}=\Delta \tag{14}\\
& \Rightarrow \frac{\mathrm{R}_{\text {eff }}}{\mathrm{R}_{\delta}}=\frac{\mathrm{R}_{\text {eff }} / \mathrm{R}_{\mathrm{dc}}}{\Delta}
\end{align*}
$$

The ratio $R_{\text {eff }} / R_{\delta}$ is given the name k_{r}, and for a given frequency, R_{δ} and δ_{o} are constant. Evidently, a plot of k_{r} versus Δ has the same shape as a plot of $R_{\text {eff }}$ versus d.

The x-axis is increasing foil thickness. For $\Delta<\Delta_{\mathrm{opt}}$, the dc resistance decreases as the thickness increases; however for $\Delta>\Delta_{\mathrm{opt}}$, the ac effects are greater than the effect of increased thickness. The minimum ac resistance is given at Δ_{opt} and the optimum thickness is

$$
\begin{equation*}
\mathrm{d}_{\mathrm{opt}}=\Delta_{\mathrm{opt}} \cdot \delta_{\mathrm{o}} \tag{15}
\end{equation*}
$$

Figure 3: Plot of k_{r} versus Δ for 13 harmonics and various numbers of layers $(\mathrm{D}=0.5)$

The effective ac resistance of a foil of thickness d is

$$
\begin{equation*}
\mathrm{R}_{\mathrm{eff}}=\mathrm{k}_{\mathrm{r}} \mathrm{R}_{\delta}=\mathrm{k}_{\mathrm{r}} \Delta \mathrm{R}_{\mathrm{dc}} \tag{16}
\end{equation*}
$$

Assuming a maximum of N harmonics, k_{r} is obtained from (12) and (14):

$$
\begin{align*}
\mathrm{k}_{\mathrm{r}} & =\frac{\mathrm{R}_{\text {eff }}}{\Delta \mathrm{R}_{\mathrm{dc}}} \tag{17}\\
& =\frac{\mathrm{D}}{\Delta}+\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{\operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})}{\mathrm{n}^{2} \Delta} \mathrm{k}_{\mathrm{p}_{\mathrm{n}}}
\end{align*}
$$

$\mathrm{k}_{\mathrm{p}_{\mathrm{n}}}$ is given by Dowell's formula [1]:

$$
\mathrm{k}_{\mathrm{p}_{\mathrm{n}}}=\sqrt{\mathrm{n}} \Delta\left[\begin{array}{l}
\frac{\operatorname{Sinh}(2 \sqrt{\mathrm{n}} \Delta)+\operatorname{Sin}(2 \sqrt{\mathrm{n}} \Delta)}{\operatorname{Cosh}(2 \sqrt{\mathrm{n}} \Delta)-\operatorname{Cos}(2 \sqrt{\mathrm{n}} \Delta)}+ \tag{18}\\
\frac{2\left(\mathrm{p}^{2}-1\right)}{3} \frac{\operatorname{Sinh}(\sqrt{\mathrm{n}} \Delta)-\operatorname{Sin}(\sqrt{\mathrm{n}} \Delta)}{\operatorname{Cosh}(\sqrt{\mathrm{n}} \Delta)+\operatorname{Cos}(\sqrt{\mathrm{n}} \Delta)}
\end{array}\right]
$$

where p is the number of layers of foil. The skin depth at the nth harmonic is

$$
\begin{align*}
& \delta_{\mathrm{n}}=\frac{1}{\sqrt{\pi \mathrm{nf} \mu_{\mathrm{r}} \mu_{\mathrm{o}} \sigma}}=\frac{\delta_{\mathrm{o}}}{\sqrt{\mathrm{n}}} \tag{19}\\
& \Delta_{\mathrm{n}}=\frac{\mathrm{d}}{\delta_{\mathrm{n}}}=\sqrt{\mathrm{n}} \frac{\mathrm{~d}}{\delta_{\mathrm{o}}}=\sqrt{\mathrm{n}} \Delta
\end{align*}
$$

k_{r} is now given by

$$
\begin{align*}
\mathrm{k}_{\mathrm{r}}= & \frac{\mathrm{D}}{\Delta}+\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{\operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})}{\mathrm{n}^{\frac{3}{2}}} \times \\
& {\left[\begin{array}{l}
\frac{\operatorname{Sinh}(2 \sqrt{\mathrm{n}} \Delta)+\operatorname{Sin}(2 \sqrt{\mathrm{n}} \Delta)}{\operatorname{Cosh}(2 \sqrt{\mathrm{n}} \Delta)-\operatorname{Cos}(2 \sqrt{\mathrm{n}} \Delta)}+ \\
\frac{2\left(\mathrm{p}^{2}-1\right)}{3} \frac{\operatorname{Sinh}(\sqrt{\mathrm{n}} \Delta)-\operatorname{Sin}(\sqrt{\mathrm{n}} \Delta)}{\operatorname{Cosh}(\sqrt{\mathrm{n}} \Delta)+\operatorname{Cos}(\sqrt{\mathrm{n}} \Delta)}
\end{array}\right] } \tag{20}
\end{align*}
$$

Figure 4: Round versus foil conductor

Example: Push-Pull Converter

Take $\mathrm{D}=0.5, \mathrm{p}=6, \mathrm{t}_{\mathrm{r}}=2.5 \%$, and $\mathrm{f}=50 \mathrm{kHz}$.

$$
\mathrm{N}=\frac{35}{\mathrm{t}_{\mathrm{r}} \%}=\frac{35}{2.5}=14
$$

Choose $\mathrm{N}=13$, since N is odd. From the graph of k_{r} versus Δ for $p=6$ in Figure 3

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{r}_{\mathrm{opt}}}=3.12 \text { and } \Delta_{\mathrm{opt}}=0.43 \\
& \delta_{\mathrm{o}}=\frac{66}{\sqrt{\mathrm{f}}}=\frac{66}{\sqrt{50 \times 10^{3}}}=0.295 \mathrm{~mm}
\end{aligned}
$$

The optimum foil thickness is equal to

$$
\mathrm{d}_{\mathrm{opt}}=\Delta_{\mathrm{opt}} \delta_{\mathrm{o}}=0.43 \times 0.295=0.13 \mathrm{~mm}
$$

and the ac resistance is

$$
\mathrm{R}_{\mathrm{eff}}=\mathrm{k}_{\mathrm{r}} \Delta \mathrm{R}_{\mathrm{dc}}=3.12 \times 0.43 \mathrm{R}_{\mathrm{dc}}=1.34 \mathrm{R}_{\mathrm{dc}}
$$

A 2.24 mm diameter of bare copper wire has the same copper area as a $0.13 \mathrm{~mm} \times 30 \mathrm{~mm}$ foil. The skin effect factor of the round conductor is given by

$$
\mathrm{k}_{\mathrm{s}}=0.25+0.5\left(\frac{\mathrm{r}_{\mathrm{o}}}{\delta_{\mathrm{o}}}\right)=0.25+0.5(3.8)=2.15
$$

This is for the fundamental frequency only. Evidently in this case, the choice of a foil conductor is vastly superior.

2. Approximate Analysis

The following general approximations can be made:

$$
\begin{align*}
& \frac{\operatorname{Sinh}(2 \Delta)+\operatorname{Sin}(2 \Delta)}{\operatorname{Cosh}(2 \Delta)-\operatorname{Cos}(2 \Delta)} \approx \frac{1}{\Delta}+\frac{\Delta^{3}}{\mathrm{a}} \tag{21}\\
& \frac{\operatorname{Sinh}(\Delta)-\operatorname{Sin}(\Delta)}{\operatorname{Cosh}(\Delta)+\operatorname{Cos}(\Delta)} \approx \frac{\Delta^{3}}{\mathrm{~b}}
\end{align*}
$$

where a and b are constants. The values of a and b may be arrived at by using either of two methods. The first one involves expanding the trigonometric functions in (21) using Taylor's series and limiting them to a set number of terms:

$$
\begin{align*}
& \operatorname{Cos}(\Delta) \approx 1-\frac{\Delta^{2}}{2!}+\frac{\Delta^{4}}{4!} \quad \operatorname{Cosh}(\Delta) \approx 1+\frac{\Delta^{2}}{2!}+\frac{\Delta^{4}}{4!} \\
& \operatorname{Sin}(\Delta) \approx \Delta-\frac{\Delta^{3}}{3!}+\frac{\Delta^{5}}{5!} \quad \operatorname{Sinh}(\Delta) \approx \Delta+\frac{\Delta^{3}}{3!}+\frac{\Delta^{5}}{5!} \tag{22}
\end{align*}
$$

This method yields $\mathrm{a}=7.5$ and $\mathrm{b}=6$. Alternatively, a and b may be obtained by approximating the full trigonometric expressions in (21) using regression analysis over a particular range of Δ. This method yields a better
approximate fit over that range. For Δ between 0.1 and 1.0, $\mathrm{a}=11.57$ and $\mathrm{b}=6.18$.

The proximity effect factor is then given by

$$
\begin{align*}
\mathrm{k}_{\mathrm{p}} & =\Delta\left[\begin{array}{l}
\frac{\operatorname{Sinh}(2 \Delta)+\operatorname{Sin}(2 \Delta)}{\operatorname{Cosh}(2 \Delta)-\operatorname{Cos}(2 \Delta)}+ \\
\frac{2\left(\mathrm{p}^{2}-1\right)}{3} \frac{\operatorname{Sinh}(\Delta)-\operatorname{Sin}(\Delta)}{\operatorname{Cosh}(\Delta)+\operatorname{Cos}(\Delta)}
\end{array}\right] \\
& \approx 1+\frac{\Delta^{4}}{\mathrm{a}}+\frac{2\left(\mathrm{p}^{2}-1\right)}{3} \frac{\Delta^{4}}{\mathrm{~b}} \tag{23}\\
& =1+\left[\frac{2}{3 \mathrm{~b}} \mathrm{p}^{2}+\frac{1}{\mathrm{a}}-\frac{2}{3 \mathrm{~b}}\right] \Delta^{4}
\end{align*}
$$

Substituting this expression into k_{r} gives

$$
\begin{align*}
\mathrm{k}_{\mathrm{r}}= & \frac{\mathrm{D}}{\Delta}+\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{\operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})}{\mathrm{n}^{2} \Delta}\left(1+\left[\frac{2}{3 \mathrm{~b}} \mathrm{p}^{2}\right.\right. \\
& \left.\left.+\frac{1}{\mathrm{a}}-\frac{2}{3 b}\right](\sqrt{\mathrm{n}} \Delta)^{4}\right) \\
= & \frac{\mathrm{D}+\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{\operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})}{\mathrm{n}^{2}}}{\Delta} \tag{24}\\
& +\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})\left[\frac{2}{3 b} \mathrm{p}^{2}+\frac{1}{\mathrm{a}}-\frac{2}{3 b}\right] \Delta^{3}
\end{align*}
$$

The derivative of k_{r} with respect to Δ is used to calculate the optimum value of Δ :

$$
\begin{align*}
\frac{\mathrm{dk}_{\mathrm{r}}}{\mathrm{~d} \Delta} & =-\frac{\left[\mathrm{D}+\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{\operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})}{\mathrm{n}^{2}}\right]}{\Delta^{2}} \tag{25}\\
& +\left(\frac{2}{\pi^{2} \mathrm{D}} \sum_{\mathrm{n}=1}^{\mathrm{N}} \operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})\left[\frac{2}{\mathrm{~b}} \mathrm{p}^{2}+\frac{3}{\mathrm{a}}-\frac{2}{\mathrm{~b}}\right]\right) \Delta^{2}
\end{align*}
$$

Setting $\frac{\mathrm{dk}_{\mathrm{r}}}{\mathrm{d} \Delta}=0$ gives

$$
\begin{equation*}
\Delta_{\text {opt }}=\sqrt[4]{\frac{D+\frac{2}{\pi^{2} D} \sum_{n=1}^{N} \frac{\operatorname{Sin}^{2}(n \pi D)}{n^{2}}}{\frac{2}{\pi^{2} D} \sum_{n=1}^{N} \operatorname{Sin}^{2}(n \pi D)\left[\frac{2}{b} p^{2}+\frac{3}{a}-\frac{2}{b}\right]}} \tag{26}
\end{equation*}
$$

If $D=0.5$, then the formula for $\Delta_{\text {opt }}$ is given by

$$
\begin{equation*}
\Delta_{\mathrm{opt}}=\sqrt[4]{\frac{0.5+\frac{4}{\pi^{2}} \sum_{\mathrm{n}=1, \mathrm{odd}}^{\mathrm{N}} \frac{1}{\mathrm{n}^{2}}}{\frac{4}{\pi^{2}}\left(\frac{\mathrm{~N}+1}{2}\right)\left[\frac{2}{\mathrm{~b}} \mathrm{p}^{2}+\frac{3}{\mathrm{a}}-\frac{2}{\mathrm{~b}}\right]}} \tag{27}
\end{equation*}
$$

Also, for large N, $\sum_{\mathrm{n}=1, \text { odd }}^{\mathrm{N}} \frac{1}{\mathrm{n}^{2}}=\sum_{\mathrm{k}=0}^{\frac{\mathrm{N}-1}{2}} \frac{1}{(2 \mathrm{k}+1)^{2}} \rightarrow \frac{\pi^{2}}{8}$. So with a $=7.5$ and $\mathrm{b}=6, \Delta_{\text {opt }}$ for this case can be re-written as

$$
\begin{equation*}
\Delta_{\mathrm{opt}}=\frac{1}{\sqrt[4]{\left(\frac{\mathrm{N}+1}{2}\right)\left(0.135 \mathrm{p}^{2}+0.027\right)}} \tag{28}
\end{equation*}
$$

Example: Push-Pull Converter

Take $\mathrm{D}=0.5, \mathrm{p}=6, \mathrm{t}_{\mathrm{r}}=2.5 \%$, and $\mathrm{f}=50 \mathrm{kHz}$.

$$
\mathrm{N}=\frac{35}{\mathrm{t}_{\mathrm{r}} \%}=\frac{35}{2.5}=14
$$

Choose $\mathrm{N}=13$, since N is odd.

$$
\begin{aligned}
& \Delta_{\mathrm{opt}}=\frac{1}{\sqrt[4]{\left(\frac{13+1}{2}\right)\left(0.135 \times 6^{2}+0.027\right)}}=0.41 \\
& \delta_{\mathrm{o}}=\frac{66}{\sqrt{\mathrm{f}}}=\frac{66}{\sqrt{50 \times 10^{3}}}=0.295 \mathrm{~mm}
\end{aligned}
$$

The optimum foil thickness is equal to

$$
\mathrm{d}_{\mathrm{opt}}=\Delta_{\mathrm{opt}} \delta_{\mathrm{o}}=0.41 \times 0.295=0.12 \mathrm{~mm}
$$

The value of k_{r} is calculated using the following formula derived from (24):
$\mathrm{k}_{\mathrm{r}}=\frac{0.5+\frac{4}{\pi^{2}} \sum_{\mathrm{n}=1, \text { odd }}^{\mathrm{N}} \frac{1}{\mathrm{n}^{2}}}{\Delta}+\frac{4}{\pi^{2}}\left(\frac{\mathrm{~N}+1}{2}\right)\left(0.111 \mathrm{p}^{2}+0.022\right) \Delta^{3}$

$$
\begin{aligned}
& =\frac{0.5+\frac{4}{\pi^{2}}(1.198)}{0.41}+\frac{4}{\pi^{2}}\left(\frac{14}{2}\right)\left(0.111(6)^{2}+0.022\right)(0.41)^{3} \\
& =3.19 \quad \cdots \quad \text { exact is } 3.12
\end{aligned}
$$

The ac resistance can now be evaluated as

$$
\begin{aligned}
\mathrm{R}_{\text {eff }} & =\mathrm{k}_{\mathrm{r}} \Delta \mathrm{R}_{\mathrm{dc}}=3.19 \times 0.41 \mathrm{R}_{\mathrm{dc}} \\
& =1.31 \mathrm{R}_{\mathrm{dc}} \quad \ldots \quad \text { exact is } 1.34 \mathrm{R}_{\mathrm{dc}}
\end{aligned}
$$

CONCLUSIONS

The derivation of an approximate formula for the optimum thickness of a high frequency transformer winding has been described for the case of a rectified square waveform, and similar formulæ have been derived for other waveforms as shown in Table 1.

ACKNOWLEDGEMENTS

This work has been funded by PEI Technologies.

REFERENCES

[1] Dowell, P.L.: "Effects of Eddy Currents in Transformer Windings", IEEE Proceedings, Vol. 113 No. 8, 1966.

Current Waveform	Approximation Formula for $\Delta_{\text {opt }}$
	$\Delta_{\mathrm{opt}}=\sqrt[4]{\frac{1}{\left[\frac{2}{\mathrm{~b}} \mathrm{p}^{2}+\frac{3}{\mathrm{a}}-\frac{2}{\mathrm{~b}}\right]}}$
 Duty Cycle Rectified Sine Wave D $=1$ for Full Wave Rectification $D=0.5$ for Half Wave Rectific ation	For $1 /(2 \mathrm{D})=\mathrm{k} \notin \mathbf{N}, \Delta_{\text {opt }}=\sqrt[4]{\frac{1+\sum_{n=1}^{N} \frac{2 \operatorname{Cos}^{2}(n \pi D)}{\left(1-4 n^{2} D^{2}\right)^{2}}}{\sum_{n=1}^{N} \frac{2 \operatorname{Cos}^{2}(n \pi D)}{\left(1-4 n^{2} D^{2}\right)^{2}} n^{2}\left(\frac{2}{b} p^{2}+\frac{3}{a}-\frac{2}{b}\right)}}$ For $1 /(2 \mathrm{D})=\mathrm{k} \in \mathbf{N}, \Delta_{\text {opt }}=\sqrt{\frac{\frac{8 D}{\pi^{2}}+\frac{16 D}{\pi^{2}} \sum_{\substack{n=1 \\ n \neq k}}^{N} \frac{\operatorname{Cos}^{2}(n \pi D)}{\left(1-4 n^{2} D^{2}\right)^{2}}+\frac{1}{4 k^{2} D}}{\left(\frac{2}{b} p^{2}+\frac{3}{a}-\frac{2}{b}\right)\left[\frac{16 D}{\pi^{2}} \sum_{\substack{n=1 \\ n \neq k}}^{N} \frac{\operatorname{Cos}^{2}(n \pi D)}{\left(1-4 n^{2} D^{2}\right)^{2}} n^{2}+\frac{1}{4 D}\right]}}$
	$\Delta_{\text {opt }}=\sqrt[4]{\frac{(2 \mathrm{D}-1)^{2}+\frac{8}{\pi^{2}} \sum_{1}^{\mathrm{N}} \frac{\operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})}{\mathrm{n}^{2}}}{\frac{8}{\pi^{2}} \sum_{1}^{\mathrm{N}} \operatorname{Sin}^{2}(\mathrm{n} \pi \mathrm{D})\left[\frac{2}{\mathrm{~b}} \mathrm{p}^{2}+\frac{3}{\mathrm{a}}-\frac{2}{\mathrm{~b}}\right]}}$
	$\Delta_{\text {opt }}=\sqrt[4]{\frac{\sum_{\mathrm{n}=1, \text { odd }}^{\mathrm{N}} \frac{1}{\mathrm{n}^{4}}}{\sum_{\mathrm{n}=1, \text { odd }}^{\mathrm{N}} \frac{1}{\mathrm{n}^{2}}\left[\frac{2}{\mathrm{~b}} \mathrm{p}^{2}+\frac{3}{\mathrm{a}}-\frac{2}{\mathrm{~b}}\right]}}$
	$\Delta_{\text {opt }}=\sqrt[4]{\frac{1+\sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{32}{\pi^{4} \mathrm{n}^{4} \mathrm{D}^{4}} \operatorname{Sin}^{4}\left(\frac{\mathrm{n} \pi \mathrm{D}}{2}\right)}{\sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{32}{\pi^{4} \mathrm{n}^{2} \mathrm{D}^{4}} \operatorname{Sin}^{4}\left(\frac{\mathrm{n} \pi \mathrm{D}}{2}\right)\left[\frac{2}{\mathrm{~b}} \mathrm{p}^{2}+\frac{3}{\mathrm{a}}-\frac{2}{\mathrm{~b}}\right]}}$

Table 1: Formulæ for the optimum thickness of a winding for various waveforms, $a=7.5, b=6$

