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ABSTRACT 
 
With the miniaturisation of magnetic components in power 
supplies, increased switching frequencies in the kHz-MHz 
range are required.  But with these increased frequencies 
comes the problem of increased winding losses due to 
proximity effects.  This paper describes how waveforms 
encountered in switch-mode power supplies may be 
incorporated into a transformer design algorithm, with 
emphasis on minimising ac resistances (and hence power 
dissipation) in the windings.  Approximation formulæ for 
the optimum thickness of a foil have been found using 
regression analysis and Taylor series approximations for 
duty-cycle varying waveforms, and are given in terms of N, 
the number of harmonics, and p, the number of layers of 
foil required.  These formulæ will be implemented as part 
of the winding selection process in a Windows-based 
package. 
 
1.  WAVEFORM ANALYSIS 
 
The formula for the optimum thickness of a layer in a 
transformer winding may be derived for waveforms with 
varying and non-varying duty-cycles.  This has been done 
for a number of waveforms as shown in Table 1, and the 
formula for a duty-cycle varying pulsed (or rectified square) 
waveform is now derived as a sample case. 
 
The waveform shown in Figure 1 is representative of the 
current in a push-pull winding.  Io is related to the dc 
output current; for a 1:1 turns ratio, it is equal to the dc 
output current for a 100% duty cycle. 
 
Figure 1 can be taken as an even function about 0 as shown 
in Figure 2.  We shall take one period T (marked by dashed 
arrow) to calculate the Fourier Series of i. 
 
For a range (-l, l), an even function has a Fourier Series of 
the type f(x): 
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In our case, l = T/2, x = t and f(x) = i(t).  Also, since ω = 
2π/T, nπx/l = nπt2/T = nωt. 
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Calculating the Fourier coefficients an and a0 yields 
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Figure 1:  Pulsed current waveform with a duty-cycle of D 
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Figure 2:  Same waveform taken as an even function 
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These coefficients are then inserted into the expression for 
i(t) giving 
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The average value of current is Idc = IoD.  The RMS value of 
current is Io√D.  Also, the Fourier Series of i can be 
expanded as 
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If D = 0.5, this reduces to 
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The RMS value of the nth harmonic is 
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The total power loss is P = ReffIrms2 which is made up of the 
dc component and the harmonics: 
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Racn

 is the ac resistance due to the nth harmonic, and is 
given by 
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where  is the proximity effect factor due to the nth 
harmonic [1].  Thus, P is equal to 
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Since , the above can be rearranged to give P R Ieff rms= 2
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The pulse in Figure 1 is an ideal case.  Normally, there 
would be a rise time and fall time associated with the 
waveform so that a finite number of harmonics are 
required.  Typically, the upper limit on the number of 
harmonics is 
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where tr is the percentage rise time and N is odd.  For 
example, a 2.5% rise time would give N = 13. 
 
Define Rδ as the dc resistance of a foil of thickness δo, where 
δo is the skin depth at the fundamental frequency of the 
pulsed waveform.  Rdc is the dc resistance of a foil of 
thickness d and 
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The ratio R Reff δ  is given the name kr, and for a given 
frequency, Rδ and δo are constant.  Evidently, a plot of kr 
versus ∆ has the same shape as a plot of Reff versus d. 
 
The x-axis is increasing foil thickness.  For ∆ < ∆opt, the dc 
resistance decreases as the thickness increases; however 
for ∆ > ∆opt, the ac effects are greater than the effect of 
increased thickness.  The minimum ac resistance is given 
at ∆opt and the optimum thickness is 
 
         (15) dopt opt o= ∆ .δ
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Figure 3:  Plot of kr versus ∆ for 13 harmonics and various 
numbers of layers (D = 0.5) 
 
The effective ac resistance of a foil of thickness d is 
 
       (16) R k R k Reff r r dc= =δ ∆

 
Assuming a maximum of N harmonics, kr is obtained from 
(12) and (14): 
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kpn

 is given by Dowell's formula [1]: 
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where p is the number of layers of foil.  The skin depth at 
the nth harmonic is 
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kr is now given by 
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2.24 mm diameter 0.13 mm × 30 mm

 
 
Figure 4:  Round versus foil conductor 
 
Example:  Push-Pull Converter 
 
Take D = 0.5, p = 6, tr = 2.5%, and f = 50 kHz. 
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Choose N = 13, since N is odd.  From the graph of kr versus 
∆ for p = 6 in Figure 3 
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The optimum foil thickness is equal to 
 
  d mopt opt o= = × =∆ δ 0 43 0 295 013. . . m
 
and the ac resistance is 
 
  R k R R Reff r dc dc dc= = × =∆ 312 0 43 134. . .
  
A 2.24 mm diameter of bare copper wire has the same 
copper area as a 0.13 mm × 30 mm foil.  The skin effect 
factor of the round conductor is given by 
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This is for the fundamental frequency only.  Evidently in 
this case, the choice of a foil conductor is vastly superior. 
 
2.  APPROXIMATE ANALYSIS 
 
The following general approximations can be made: 
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where a and b are constants.  The values of a and b may be 
arrived at by using either of two methods.  The first one 
involves expanding the trigonometric functions in (21) 
using Taylor's series and limiting them to a set number of 
terms: 
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This method yields a = 7.5 and b = 6.  Alternatively, a and b 
may be obtained by approximating the full trigonometric 
expressions in (21) using regression analysis over a 
particular range of ∆.  This method yields a better 

approximate fit over that range.  For ∆ between 0.1 and 1.0, 
a = 11.57 and b = 6.18. 
 
The proximity effect factor is then given by 
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Substituting this expression into kr gives 
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The derivative of kr with respect to ∆ is used to calculate 
the optimum value of ∆: 
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Setting dk
d

r

∆
= 0  gives 
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If D = 0.5, then the formula for ∆opt is given by 
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Also, for large N, 1 1
2k 1 82

1
2

2

0

1
2

nn odd

N

k

N

= =

−

∑ ∑=
+

→
, ( )

π .  So with a 

= 7.5 and b = 6, ∆opt for this case can be re-written as 
 

 

( )
∆opt

N p
=

+⎛
⎝⎜

⎞
⎠⎟

+

1
1

2
0135 0 02724 . .

    (28) 
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Take D = 0.5, p = 6, tr = 2.5%, and f = 50 kHz. 
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CONCLUSIONS 
 
The derivation of an approximate formula for the optimum 
thickness of a high frequency transformer winding has 
been described for the case of a rectified square waveform, 
and similar formulæ have been derived for other waveforms 
as shown in Table 1.  

The optimum foil thickness is equal to   
  d mopt opt o= = × =∆ δ 0 41 0 295 012. . . m
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Current Waveform Approximation Formula for ∆opt
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For 1/(2D) = k ∈ N, 
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Table 1:  Formulæ for the optimum thickness of a winding for various waveforms, a = 7.5, b = 6 


